Random walks on Ramanujan digraphs and complexes

Ori Parzanchevski
Hebrew University of Jerusalem

Analysis and Geometry on Graphs and Manifolds, Potsdam 2017

Ramanujan Graphs

Ramanujan Graphs

- Adjacency operator of a graph: $(A f)(v)=\sum_{w \sim v} f(w)$.

Ramanujan Graphs

- Adjacency operator of a graph: $(A f)(v)=\sum_{w \sim v} f(w)$.
- For a k-regular graph G,

$$
\operatorname{Spec}(A)=-k \leq \lambda_{n} \leq \ldots \leq \lambda_{2} \leq \lambda_{1}=k .
$$

Ramanujan Graphs

- Adjacency operator of a graph: $(A f)(v)=\sum_{w \sim v} f(w)$.
- For a k-regular graph G,

$$
\operatorname{Spec}(A)=-k \leq \lambda_{n} \leq \ldots \leq \lambda_{2} \leq \lambda_{1}=k .
$$

- k is an eigenvalue of the constant eigenfunction.

Ramanujan Graphs

- Adjacency operator of a graph: $(A f)(v)=\sum_{w \sim v} f(w)$.
- For a k-regular graph G,

$$
\operatorname{Spec}(A)=-k \leq \lambda_{n} \leq \ldots \leq \lambda_{2} \leq \lambda_{1}=k .
$$

- k is an eigenvalue of the constant eigenfunction.
- - $k \in \operatorname{Spec}(A)$ iff G is bipartite.

Ramanujan Graphs

- Adjacency operator of a graph: $(A f)(v)=\sum_{w \sim v} f(w)$.
- For a k-regular graph G,

$$
\operatorname{Spec}(A)=-k \leq \lambda_{n} \leq \ldots \leq \lambda_{2} \leq \lambda_{1}=k .
$$

- k is an eigenvalue of the constant eigenfunction.
- $-k \in \operatorname{Spec}(A)$ iff G is bipartite.
- G is a good expander if all eigenvalues except $\pm k$ are close to zero.
- Adjacency operator of a graph: $(A f)(v)=\sum_{w \sim v} f(w)$.
- For a k-regular graph G,

$$
\operatorname{Spec}(A)=-k \leq \lambda_{n} \leq \ldots \leq \lambda_{2} \leq \lambda_{1}=k
$$

- k is an eigenvalue of the constant eigenfunction.
- $-k \in \operatorname{Spec}(A)$ iff G is bipartite.
- G is a good expander if all eigenvalues except $\pm k$ are close to zero.
- G is a Ramanujan graph if

$$
\operatorname{Spec}(A) \subseteq\{-k\} \cup[-2 \sqrt{k-1}, 2 \sqrt{k-1}] \cup\{k\}
$$

- Adjacency operator of a graph: $(A f)(v)=\sum_{w \sim v} f(w)$.
- For a k-regular graph G,

$$
\operatorname{Spec}(A)=-k \leq \lambda_{n} \leq \ldots \leq \lambda_{2} \leq \lambda_{1}=k
$$

- k is an eigenvalue of the constant eigenfunction.
- $-k \in \operatorname{Spec}(A)$ iff G is bipartite.
- G is a good expander if all eigenvalues except $\pm k$ are close to zero.
- G is a Ramanujan graph if

$$
\operatorname{Spec}(A) \subseteq\{-k\} \cup[-2 \sqrt{k-1}, 2 \sqrt{k-1}] \cup\{k\}
$$

- Optimal?
- Adjacency operator of a graph: $(A f)(v)=\sum_{w \sim v} f(w)$.
- For a k-regular graph G,

$$
\operatorname{Spec}(A)=-k \leq \lambda_{n} \leq \ldots \leq \lambda_{2} \leq \lambda_{1}=k .
$$

- k is an eigenvalue of the constant eigenfunction.
- $-k \in \operatorname{Spec}(A)$ iff G is bipartite.
- G is a good expander if all eigenvalues except $\pm k$ are close to zero.
- G is a Ramanujan graph if

$$
\operatorname{Spec}(A) \subseteq\{-k\} \cup[-2 \sqrt{k-1}, 2 \sqrt{k-1}] \cup\{k\} .
$$

- Optimal? For $G=\mathbb{P}^{2} \mathbb{F}_{p}$ (lines against planes in \mathbb{F}_{p}^{3}),

$$
\operatorname{Spec}(A)=\{-k,-\sqrt{k-1}, \sqrt{k-1}, k\} .
$$

- Adjacency operator of a graph: $(A f)(v)=\sum_{w \sim v} f(w)$.
- For a k-regular graph G,

$$
\operatorname{Spec}(A)=-k \leq \lambda_{n} \leq \ldots \leq \lambda_{2} \leq \lambda_{1}=k .
$$

- k is an eigenvalue of the constant eigenfunction.
- - $k \in \operatorname{Spec}(A)$ iff G is bipartite.
- G is a good expander if all eigenvalues except $\pm k$ are close to zero.
- G is a Ramanujan graph if

$$
\operatorname{Spec}(A) \subseteq\{-k\} \cup[-2 \sqrt{k-1}, 2 \sqrt{k-1}] \cup\{k\} .
$$

- Optimal? For $G=\mathbb{P}^{2} \mathbb{F}_{p}$ (lines against planes in \mathbb{F}_{p}^{3}),

$$
\operatorname{Spec}(A)=\{-k,-\sqrt{k-1}, \sqrt{k-1}, k\} .
$$

- Alon-Boppana: For $\varepsilon>0$, there are only finitely many k-regular graphs such that

$$
\operatorname{Spec}(A) \subseteq\{-k\} \cup[-2 \sqrt{k-1}+\varepsilon, 2 \sqrt{k-1}-\varepsilon] \cup\{k\} .
$$

Ramanujan Graphs

- Why $2 \sqrt{k-1}$?

Ramanujan Graphs

- Why $2 \sqrt{k-1}$?
- Every k-regular graph is a quotient of the k-regular tree T_{k}.
- Why $2 \sqrt{k-1}$?
- Every k-regular graph is a quotient of the k-regular tree T_{k}.
- Kesten ('59):

$$
\operatorname{Spec}\left(\left.A_{T_{k}}\right|_{L^{2}(V)}\right)=[-2 \sqrt{k-1}, 2 \sqrt{k-1}] .
$$

- Why $2 \sqrt{k-1}$?
- Every k-regular graph is a quotient of the k-regular tree T_{k}.
- Kesten ('59):

$$
\operatorname{Spec}\left(\left.A_{T_{k}}\right|_{L^{2}(V)}\right)=[-2 \sqrt{k-1}, 2 \sqrt{k-1}] .
$$

- T_{k} is the Cayley graph of $\mathbf{F}_{k / 2}$: the free group on $k / 2$ generators.
- Why $2 \sqrt{k-1}$?
- Every k-regular graph is a quotient of the k-regular tree T_{k}.
- Kesten ('59):

$$
\operatorname{Spec}\left(\left.A_{T_{k}}\right|_{L^{2}(V)}\right)=[-2 \sqrt{k-1}, 2 \sqrt{k-1}] .
$$

- T_{k} is the Cayley graph of $\mathbf{F}_{k / 2}$: the free group on $k / 2$ generators.
- Moreover (Kesten): if $G=\langle S\rangle$ and $S=S^{-1}$ then

$$
\operatorname{Spec}\left(A_{\operatorname{Cay}(G, S)}\right) \subseteq[-2 \sqrt{k-1}, 2 \sqrt{k-1}]
$$

only if S freely generates G.

- Why $2 \sqrt{k-1}$?
- Every k-regular graph is a quotient of the k-regular tree T_{k}.
- Kesten ('59):

$$
\operatorname{Spec}\left(\left.A_{T_{k}}\right|_{L^{2}(V)}\right)=[-2 \sqrt{k-1}, 2 \sqrt{k-1}] .
$$

- T_{k} is the Cayley graph of $\mathbf{F}_{k / 2}$: the free group on $k / 2$ generators.
- Moreover (Kesten): if $G=\langle S\rangle$ and $S=S^{-1}$ then

$$
\operatorname{Spec}\left(A_{\operatorname{Cay}(G, S)}\right) \subseteq[-2 \sqrt{k-1}, 2 \sqrt{k-1}]
$$

only if S freely generates G.

- General Alon-Boppana Theorem (Serre, Grinberg, Grigorchuk-Żuk): if G_{n} is an infinite family of quotients of \widetilde{G} then

$$
\overline{\lim _{n}} \lambda_{2}\left(G_{n}\right) \geq \lambda_{2}(\widetilde{G}) .
$$

Ramanujan graphs

- Existence?

Ramanujan graphs

- Existence? K_{n} is Ramanujan, but $k=\mid$ Verts $\mid-1$.

Ramanujan graphs

- Existence? K_{n} is Ramanujan, but $k=\mid$ Verts $\mid-1$.
- $\mathbb{P}^{2} \mathbb{F}_{p}$ is Ramanujan, but $k \approx \sqrt{|V|}$.

Ramanujan graphs

- Existence? K_{n} is Ramanujan, but $k=\mid$ Verts $\mid-1$.
- $\mathbb{P}^{2} \mathbb{F}_{p}$ is Ramanujan, but $k \approx \sqrt{|V|}$.
- Lubotzky-Philips-Sarnak, Margulis: for $k=$ prime +1 , there exist k-regular Ramanujan graphs with $|V| \rightarrow \infty$.

Ramanujan graphs

- Existence? K_{n} is Ramanujan, but $k=\mid$ Verts $\mid-1$.
- $\mathbb{P}^{2} \mathbb{F}_{p}$ is Ramanujan, but $k \approx \sqrt{|V|}$.
- Lubotzky-Philips-Sarnak, Margulis: for $k=$ prime +1 , there exist k-regular Ramanujan graphs with $|V| \rightarrow \infty$.
- LPS: explicit construction as Cayley graphs of $P G L_{2}\left(\mathbb{F}_{q}\right), P S L_{2}\left(\mathbb{F}_{q}\right)$.
- Existence? K_{n} is Ramanujan, but $k=\mid$ Verts $\mid-1$.
- $\mathbb{P}^{2} \mathbb{F}_{p}$ is Ramanujan, but $k \approx \sqrt{|V|}$.
- Lubotzky-Philips-Sarnak, Margulis: for $k=$ prime +1 , there exist k-regular Ramanujan graphs with $|V| \rightarrow \infty$.
- LPS: explicit construction as Cayley graphs of $P G L_{2}\left(\mathbb{F}_{q}\right), P S L_{2}\left(\mathbb{F}_{q}\right)$.

Adjacency spectrum of $P G L_{2}\left(\mathbb{F}_{13}\right)$ with respect to $\left(\begin{array}{ll}4 & 0 \\ 0 & 11\end{array}\right)^{ \pm 1},\left(\begin{array}{lll}1 & 2 \\ 11 & 1\end{array}\right)^{ \pm 1},\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)^{ \pm 1}$

$$
2 \sqrt{6-1} \approx 4.4721
$$

- Existence? K_{n} is Ramanujan, but $k=\mid$ Verts $\mid-1$.
- $\mathbb{P}^{2} \mathbb{F}_{p}$ is Ramanujan, but $k \approx \sqrt{|V|}$.
- Lubotzky-Philips-Sarnak, Margulis: for $k=$ prime +1 , there exist k-regular Ramanujan graphs with $|V| \rightarrow \infty$.
- LPS: explicit construction as Cayley graphs of $P G L_{2}\left(\mathbb{F}_{q}\right), P S L_{2}\left(\mathbb{F}_{q}\right)$.

Adjacency spectrum of $P G L_{2}\left(\mathbb{F}_{13}\right)$ with respect to $\left(\begin{array}{ll}4 & 0 \\ 0 & 11\end{array}\right)^{ \pm 1},\left(\begin{array}{cc}1 & 2 \\ 11 & 1\end{array}\right)^{ \pm 1},\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)^{ \pm 1}$

$$
2 \sqrt{6-1} \approx 4.4721
$$

- Morgenstern: $p^{k}+1$
- Existence? K_{n} is Ramanujan, but $k=\mid$ Verts $\mid-1$.
- $\mathbb{P}^{2} \mathbb{F}_{p}$ is Ramanujan, but $k \approx \sqrt{|V|}$.
- Lubotzky-Philips-Sarnak, Margulis: for $k=$ prime +1 , there exist k-regular Ramanujan graphs with $|V| \rightarrow \infty$.
- LPS: explicit construction as Cayley graphs of $P G L_{2}\left(\mathbb{F}_{q}\right), P S L_{2}\left(\mathbb{F}_{q}\right)$.

Adjacency spectrum of $P G L_{2}\left(\mathbb{F}_{13}\right)$ with respect to $\left(\begin{array}{ll}4 & 0 \\ 0 & 11\end{array}\right)^{ \pm 1},\left(\begin{array}{cc}1 & 2 \\ 11 & 1\end{array}\right)^{ \pm 1},\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)^{ \pm 1}$

$$
2 \sqrt{6-1} \approx 4.4721
$$

- Morgenstern: $p^{k}+1$
- Marcus-Spielman-Srivastava '13: Bipartite Ramanujan graphs for all k.
- Existence? K_{n} is Ramanujan, but $k=\mid$ Verts $\mid-1$.
- $\mathbb{P}^{2} \mathbb{F}_{p}$ is Ramanujan, but $k \approx \sqrt{|V|}$.
- Lubotzky-Philips-Sarnak, Margulis: for $k=$ prime +1 , there exist k-regular Ramanujan graphs with $|V| \rightarrow \infty$.
- LPS: explicit construction as Cayley graphs of $P G L_{2}\left(\mathbb{F}_{q}\right), P S L_{2}\left(\mathbb{F}_{q}\right)$.

Adjacency spectrum of $P G L_{2}\left(\mathbb{F}_{13}\right)$ with respect to $\left(\begin{array}{ll}4 & 0 \\ 0 & 11\end{array}\right)^{ \pm 1},\left(\begin{array}{ll}1 & 2 \\ 11 & 1\end{array}\right)^{ \pm 1},\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)^{ \pm 1}$

$$
2 \sqrt{6-1} \approx 4.4721
$$

- Morgenstern: $p^{k}+1$
- Marcus-Spielman-Srivastava '13: Bipartite Ramanujan graphs for all k.
- Non-bipartite is still open!

Ramanujan graphs

- Well known: Random graphs are good expanders.

Ramanujan graphs

- Well known: Random graphs are good expanders.
- Alon's conjecture (Friedman's theorem): Random regular graphs are almost Ramanujan

Ramanujan graphs

- Well known: Random graphs are good expanders.
- Alon's conjecture (Friedman's theorem): Random regular graphs are almost Ramanujan
- For any $\varepsilon>0$, the probability that

$$
\operatorname{Spec}(A) \subseteq[-2 \sqrt{k-1}-\varepsilon, 2 \sqrt{k-1}+\varepsilon] \cup\{k\}
$$

goes to 1 as $|V| \rightarrow \infty$.

Ramanujan graphs

- Well known: Random graphs are good expanders.
- Alon's conjecture (Friedman's theorem): Random regular graphs are almost Ramanujan
- For any $\varepsilon>0$, the probability that

$$
\operatorname{Spec}(A) \subseteq[-2 \sqrt{k-1}-\varepsilon, 2 \sqrt{k-1}+\varepsilon] \cup\{k\}
$$

goes to 1 as $|V| \rightarrow \infty$.

Random regular graph with $k=6,|V|=300$

Ramanujan graphs

- Well known: Random graphs are good expanders.
- Alon's conjecture (Friedman's theorem): Random regular graphs are almost Ramanujan
- For any $\varepsilon>0$, the probability that

$$
\operatorname{Spec}(A) \subseteq[-2 \sqrt{k-1}-\varepsilon, 2 \sqrt{k-1}+\varepsilon] \cup\{k\}
$$

goes to 1 as $|V| \rightarrow \infty$.

Random regular graph with $k=6,|V|=300$

Digraphs

Digraphs

- For a digraph $G, \operatorname{Spec}\left(A_{G}\right) \subseteq \mathbb{C}$ in general.

Digraphs

- For a digraph $G, \operatorname{Spec}\left(A_{G}\right) \subseteq \mathbb{C}$ in general.
- For a k-regular digraph, $k \in \operatorname{Spec}(A)$.

Digraphs

- For a digraph $G, \operatorname{Spec}\left(A_{G}\right) \subseteq \mathbb{C}$ in general.
- For a k-regular digraph, $k \in \operatorname{Spec}(A)$.
- $-k \in \operatorname{Spec}(A)$ if G is bipartite

Digraphs

- For a digraph $G, \operatorname{Spec}\left(A_{G}\right) \subseteq \mathbb{C}$ in general.
- For a k-regular digraph, $k \in \operatorname{Spec}(A)$.
- $-k \in \operatorname{Spec}(A)$ if G is bipartite
- $e^{\frac{2 \pi i}{3}} k \in \operatorname{Spec}(A)$ if G is 3 -periodic

Digraphs

- For a digraph $G, \operatorname{Spec}\left(A_{G}\right) \subseteq \mathbb{C}$ in general.
- For a k-regular digraph, $k \in \operatorname{Spec}(A)$.
- $-k \in \operatorname{Spec}(A)$ if G is bipartite
- $e^{\frac{2 \pi i}{3}} k \in \operatorname{Spec}(A)$ if G is 3 -periodic, ...
- We call all of these trivial.

Digraphs

- For a digraph $G, \operatorname{Spec}\left(A_{G}\right) \subseteq \mathbb{C}$ in general.
- For a k-regular digraph, $k \in \operatorname{Spec}(A)$.
- $-k \in \operatorname{Spec}(A)$ if G is bipartite
- $e^{\frac{2 \pi i}{3}} k \in \operatorname{Spec}(A)$ if G is 3 -periodic, ...
- We call all of these trivial.
- A might be non-diagonalizable, or not normal (=unitarily diagonalizable).

Digraphs

- For a digraph $G, \operatorname{Spec}\left(A_{G}\right) \subseteq \mathbb{C}$ in general.
- For a k-regular digraph, $k \in \operatorname{Spec}(A)$.
- $-k \in \operatorname{Spec}(A)$ if G is bipartite
- $e^{\frac{2 \pi i}{3}} k \in \operatorname{Spec}(A)$ if G is 3 -periodic, ...
- We call all of these trivial.
- A might be non-diagonalizable, or not normal (=unitarily diagonalizable). Arguments using inner product break down.

Ramanujan digraphs

What is the universal object?

Ramanujan digraphs

What is the universal object?
(a) Cay ($\left.\mathbf{F}_{k},\left\{x_{1}, \ldots, x_{k}\right\}\right)$

Ramanujan digraphs

What is the universal object?
(a) $\operatorname{Cay}\left(\mathbf{F}_{k},\left\{x_{1}, \ldots, x_{k}\right\}\right)$

Ramanujan digraphs

(b) Cay $\left(\right.$ FSG $\left._{k},\left\{x_{1}, \ldots, x_{k}\right\}\right)$ (Free semigroup - only positive letters)

Ramanujan digraphs

(b) Cay $\left(\right.$ FSG $\left._{k},\left\{x_{1}, \ldots, x_{k}\right\}\right)$ (Free semigroup - only positive letters)

Ramanujan digraphs

(c) Line-digraph of the $(k+1)$-regular tree:

Ramanujan digraphs

(c) Line-digraph of the $(k+1)$-regular tree:

Vertices: directed edges of T_{k}
Edges: $e_{1} \rightarrow e_{2}$ iff e_{1}, e_{2} is a non-backtracking path

Ramanujan digraphs

(c) Line-digraph of the $(k+1)$-regular tree:

Vertices: directed edges of T_{k}
Edges: $e_{1} \rightarrow e_{2}$ iff e_{1}, e_{2} is a non-backtracking path

Ramanujan digraphs

(c) Line-digraph of the $(k+1)$-regular tree:

Vertices: directed edges of T_{k}
Edges: $e_{1} \rightarrow e_{2}$ iff e_{1}, e_{2} is a non-backtracking path

Ramanujan digraphs

(c) Line-digraph of the $(k+1)$-regular tree:

Vertices: directed edges of T_{k}
Edges: $e_{1} \rightarrow e_{2}$ iff e_{1}, e_{2} is a non-backtracking path

Ramanujan digraphs

(c) Line-digraph of the $(k+1)$-regular tree:

Vertices: directed edges of T_{k}
Edges: $e_{1} \rightarrow e_{2}$ iff e_{1}, e_{2} is a non-backtracking path

Ramanujan digraphs

Candidates:

- Cay $\left(\mathbf{F}_{k},\left\{x_{1}, \ldots, x_{k}\right\}\right)$
- Cay (FSG $_{k},\left\{x_{1}, \ldots, x_{k}\right\}$) (Free semigroup)
- $\operatorname{LDG}\left(T_{k+1}\right)$ (Line-digraph)

Ramanujan digraphs

Candidates:

- $\operatorname{Cay}\left(\mathbf{F}_{k},\left\{x_{1}, \ldots, x_{k}\right\}\right)$
- Cay ($\left.\mathbf{F S G}_{k},\left\{x_{1}, \ldots, x_{k}\right\}\right)$ (Free semigroup)
- $\operatorname{LDG}\left(T_{k+1}\right)$ (Line-digraph)

Spectra (I think):

Ramanujan digraphs

Candidates:

- Cay ($\left.\mathbf{F}_{k},\left\{x_{1}, \ldots, x_{k}\right\}\right)$
- Cay (FSG $_{k},\left\{x_{1}, \ldots, x_{k}\right\}$) (Free semigroup)
- LDG (T_{k+1}) (Line-digraph)

Spectra (I think):

- The spectrum of $\operatorname{LDG}(G)$ is the spectrum of nonbacktracking random walk on G.

Ramanujan digraphs

Candidates:

- Cay ($\left.\mathbf{F}_{k},\left\{x_{1}, \ldots, x_{k}\right\}\right)$
- Cay (FSG $_{k},\left\{x_{1}, \ldots, x_{k}\right\}$) (Free semigroup)
- LDG (T_{k+1}) (Line-digraph)

Spectra (I think):

- The spectrum of $\operatorname{LDG}(G)$ is the spectrum of nonbacktracking random walk on G.
- $\pm 1 \in \operatorname{Spec}\left(\operatorname{LDG}\left(T_{k+1}\right)\right)$ come from paths from ∞ to ∞.

Ramanujan digraphs

Ramanujan digraphs

- Definition: a k-regular digraph is a Ramanujan digraph if

$$
\operatorname{Spec}(A) \subseteq\{z \in \mathbb{C}||z| \leq \sqrt{k} \text { or }| z \mid=k\} .
$$

Ramanujan digraphs

- Definition: a k-regular digraph is a Ramanujan digraph if

$$
\operatorname{Spec}(A) \subseteq\{z \in \mathbb{C}||z| \leq \sqrt{k} \text { or }| z \mid=k\} .
$$

Example:

Ramanujan digraphs

- Definition: a k-regular digraph is a Ramanujan digraph if

$$
\operatorname{Spec}(A) \subseteq\{z \in \mathbb{C}||z| \leq \sqrt{k} \text { or }| z \mid=k\} \text {. }
$$

Example:

- Theorem (Ihara-Hashimoto): for a ($k+1$)-regular graph,

$$
\operatorname{Spec}\left(A_{\operatorname{LDG}(G)}\right)=\{ \pm 1\}^{\beta_{1}} \cup\left\{\left.\frac{\lambda \pm \sqrt{\lambda^{2}-4 k}}{2} \right\rvert\, \lambda \in \operatorname{Spec}\left(A_{G}\right)\right\}
$$

Ramanujan digraphs

- Definition: a k-regular digraph is a Ramanujan digraph if

$$
\operatorname{Spec}(A) \subseteq\{z \in \mathbb{C}||z| \leq \sqrt{k} \text { or }| z \mid=k\} \text {. }
$$

Example:

- Theorem (Ihara-Hashimoto): for a ($k+1$)-regular graph,

$$
\operatorname{Spec}\left(A_{\operatorname{LDG}(G)}\right)=\{ \pm 1\}^{\beta_{1}} \cup\left\{\left.\frac{\lambda \pm \sqrt{\lambda^{2}-4 k}}{2} \right\rvert\, \lambda \in \operatorname{Spec}\left(A_{G}\right)\right\}
$$

- Exercise: $\lambda \in[-2 \sqrt{k}, 2 \sqrt{k}] \Leftrightarrow\left|\frac{\lambda \pm \sqrt{\lambda^{2}-4 k}}{2}\right| \leq \sqrt{k}$.
- Definition: a k-regular digraph is a Ramanujan digraph if

$$
\operatorname{Spec}(A) \subseteq\{z \in \mathbb{C}||z| \leq \sqrt{k} \text { or }| z \mid=k\} .
$$

Example:

- Theorem (Ihara-Hashimoto): for a $(k+1)$-regular graph,

$$
\operatorname{Spec}\left(A_{\operatorname{LDG}(G)}\right)=\{ \pm 1\}^{\beta_{1}} \cup\left\{\left.\frac{\lambda \pm \sqrt{\lambda^{2}-4 k}}{2} \right\rvert\, \lambda \in \operatorname{Spec}\left(A_{G}\right)\right\}
$$

- Exercise: $\lambda \in[-2 \sqrt{k}, 2 \sqrt{k}] \Leftrightarrow\left|\frac{\lambda \pm \sqrt{\lambda^{2}-4 k}}{2}\right| \leq \sqrt{k}$.
- So, G is $(k+1)$-Ramanujan graph $\Leftrightarrow \operatorname{LDG}(G)$ is a k-Ramanujan digraph.

Ramanujan Cayley graphs

- Lubotzky-Philips-Sarnak: The matrices

$$
\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1+2 i & 0 \\
0 & 1-2 i
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 i \\
2 i & 1
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)^{ \pm 1}
$$

Ramanujan Cayley graphs

- Lubotzky-Philips-Sarnak: The matrices

$$
\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1+2 i & 0 \\
0 & 1-2 i
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 i \\
2 i & 1
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)^{ \pm 1}
$$

generate a free group $\Gamma \leq U\left(\mathbb{Z}\left[\frac{1}{\sqrt{5}}\right]\right)$

- Lubotzky-Philips-Sarnak: The matrices

$$
\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1+2 i & 0 \\
0 & 1-2 i
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 i \\
2 i & 1
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)^{ \pm 1}
$$

generate a free group $\Gamma \leq U\left(\mathbb{Z}\left[\frac{1}{\sqrt{5}}\right]\right)$, which acts simply transitively on Verts $\left(T_{6}\right)$.

- Lubotzky-Philips-Sarnak: The matrices

$$
\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1+2 i & 0 \\
0 & 1-2 i
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 i \\
2 i & 1
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)^{ \pm 1}
$$

generate a free group $\Gamma \leq U\left(\mathbb{Z}\left[\frac{1}{\sqrt{5}}\right]\right)$, which acts simply transitively on $\operatorname{Verts}\left(T_{6}\right)$.

- (T_{6} is the the symmetric space of the p-adic Lie group $\left.U_{2}\left(\mathbb{Q}_{5}\right)\right)$.
- Lubotzky-Philips-Sarnak: The matrices

$$
\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1+2 i & 0 \\
0 & 1-2 i
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 i \\
2 i & 1
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)^{ \pm 1}
$$

generate a free group $\Gamma \leq U\left(\mathbb{Z}\left[\frac{1}{\sqrt{5}}\right]\right)$, which acts simply transitively on Verts $\left(T_{6}\right)$.

- (T_{6} is the the symmetric space of the p-adic Lie group $\left.U_{2}\left(\mathbb{Q}_{5}\right)\right)$.
- From deep arithmetic theorems (Ramanujan, Eichler, Igusa, Ihara, Jacquet-Langlands, Deligne...) it follows that they generate finite graphs with the same spectrum when projected modulo q.
- Lubotzky-Philips-Sarnak: The matrices

$$
\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1+2 i & 0 \\
0 & 1-2 i
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 i \\
2 i & 1
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)^{ \pm 1}
$$

generate a free group $\Gamma \leq U\left(\mathbb{Z}\left[\frac{1}{\sqrt{5}}\right]\right)$, which acts simply transitively on Verts $\left(T_{6}\right)$.

- (T_{6} is the the symmetric space of the p-adic Lie group $\left.U_{2}\left(\mathbb{Q}_{5}\right)\right)$.
- From deep arithmetic theorems (Ramanujan, Eichler, Igusa, Ihara, Jacquet-Langlands, Deligne...) it follows that they generate finite graphs with the same spectrum when projected modulo q. E.g.:

$$
\left(\begin{array}{ll}
1+2 i & \\
& 1-2 i
\end{array}\right) \equiv\left({ }^{1+2 \cdot 8} \quad 1-2 \cdot 8\right) \equiv\left(\begin{array}{ll}
4^{4} & 11
\end{array}\right)(\bmod 13) .
$$

- Lubotzky-Philips-Sarnak: The matrices

$$
\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1+2 i & 0 \\
0 & 1-2 i
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 i \\
2 i & 1
\end{array}\right)^{ \pm 1}, \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)^{ \pm 1}
$$

generate a free group $\Gamma \leq U\left(\mathbb{Z}\left[\frac{1}{\sqrt{5}}\right]\right)$, which acts simply transitively on Verts $\left(T_{6}\right)$.

- (T_{6} is the the symmetric space of the p-adic Lie group $\left.U_{2}\left(\mathbb{Q}_{5}\right)\right)$.
- From deep arithmetic theorems (Ramanujan, Eichler, Igusa, Ihara, Jacquet-Langlands, Deligne...) it follows that they generate finite graphs with the same spectrum when projected modulo q. E.g.:

$$
\left(\begin{array}{ll}
1+2 i & \\
& 1-2 i
\end{array}\right) \equiv\left({ }^{1+2 \cdot 8} \quad 1-2 \cdot 8\right) \equiv\left(\begin{array}{ll}
4^{4} & \\
& (\bmod 13)
\end{array}\right.
$$

(Adjacency spectrum of $P G L_{2}\left(\mathbb{F}_{13}\right)$ with respect to $\left.\left(\begin{array}{cc}4 & 0 \\ 0 & 11\end{array}\right)^{ \pm 1},\left(\begin{array}{cc}1 & 2 \\ 11 & 1\end{array}\right)^{ \pm 1},\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)^{ \pm 1}\right)$

Ramanujan Cayley digraphs

- P-Sarnak: Construction of $C \leq U(2), \tau \in U(2)$, acting on T_{k}, so that

Ramanujan Cayley digraphs

- P-Sarnak: Construction of $C \leq U(2), \tau \in U(2)$, acting on T_{k}, so that - C fixes $v_{0} \in V\left(T_{k}\right)$ and acts simply-transitively on its neighbors.

Ramanujan Cayley digraphs

- P-Sarnak: Construction of $C \leq U(2), \tau \in U(2)$, acting on T_{k}, so that
- C fixes $v_{0} \in V\left(T_{k}\right)$ and acts simply-transitively on its neighbors.
- τ is an involution which flips an edge e_{0} touching the origin.
- P-Sarnak: Construction of $C \leq U(2), \tau \in U(2)$, acting on T_{k}, so that
- C fixes $v_{0} \in V\left(T_{k}\right)$ and acts simply-transitively on its neighbors.
- τ is an involution which flips an edge e_{0} touching the origin.

- P-Sarnak: Construction of $C \leq U(2), \tau \in U(2)$, acting on T_{k}, so that
- C fixes $v_{0} \in V\left(T_{k}\right)$ and acts simply-transitively on its neighbors.
- τ is an involution which flips an edge e_{0} touching the origin.

- It follows that $\Gamma=\langle C, \tau\rangle$ acts simply-transitively on the directed edges of the tree.
- E.g.:

- Observe $S=\{\tau c \mid 1 \neq c \in C\} \quad(|S|=k-1)$.

- Observe $S=\{\tau c \mid 1 \neq c \in C\} \quad(|S|=k-1)$.
- $S \cdot \ldots \cdot S \cdot e_{0}$ - non-backtracking random walk starting from e_{0}.

- Observe $S=\{\tau c \mid 1 \neq c \in C\} \quad(|S|=k-1)$.
- $S \cdot \ldots \cdot S \cdot e_{0}$ - non-backtracking random walk starting from e_{0}.
- Random walk with S as generators corresponds to NBRW on the tree!
- (Corollary: S generates a free semigroup.)

- Observe $S=\{\tau c \mid 1 \neq c \in C\} \quad(|S|=k-1)$.
- $S \cdot \ldots \cdot S \cdot e_{0}$ - non-backtracking random walk starting from e_{0}.
- Random walk with S as generators corresponds to NBRW on the tree!
- (Corollary: S generates a free semigroup.)
- The Ramanujan conjectures (Deligne's theorem) imply that if we project S modulo q we get a finite graph with the same spectrum as before

- Observe $S=\{\tau c \mid 1 \neq c \in C\} \quad(|S|=k-1)$.
- $S \cdot \ldots \cdot S \cdot e_{0}$ - non-backtracking random walk starting from e_{0}.
- Random walk with S as generators corresponds to NBRW on the tree!
- (Corollary: S generates a free semigroup.)
- The Ramanujan conjectures (Deligne's theorem) imply that if we project S modulo q we get a finite graph with the same spectrum as before:

$$
\operatorname{Spec}(\operatorname{Cay}(\langle S(\bmod q)\rangle, S(\bmod q))) \subseteq \operatorname{Spec}\left(\operatorname{LDG}\left(T_{k+1}\right)\right) \cup\{ \pm k\},
$$

- Observe $S=\{\tau c \mid 1 \neq c \in C\} \quad(|S|=k-1)$.
- $S \cdot \ldots \cdot S \cdot e_{0}$ - non-backtracking random walk starting from e_{0}.
- Random walk with S as generators corresponds to NBRW on the tree!
- (Corollary: S generates a free semigroup.)
- The Ramanujan conjectures (Deligne's theorem) imply that if we project S modulo q we get a finite graph with the same spectrum as before:

$$
\operatorname{Spec}(\operatorname{Cay}(\langle S(\bmod q)\rangle, S(\bmod q))) \subseteq \operatorname{Spec}\left(\operatorname{LDG}\left(T_{k+1}\right)\right) \cup\{ \pm k\},
$$

so we get a Ramanujan Cayley digraph.

Ramanujan Cayley digraphs

Example: Using $\langle\underbrace{\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)}_{C}, \underbrace{\frac{1}{\sqrt{3}}\left(\begin{array}{cc}1 & 1-i \\ 1+i & -1\end{array}\right)}_{\tau}\rangle$,

Ramanujan Cayley digraphs

Example: Using $\langle\underbrace{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)}_{c}, \underbrace{\frac{1}{\sqrt{3}}\left(\begin{array}{cc}1 & 1-i \\ 1+i & -1\end{array}\right)}_{\tau}\rangle$,

$$
S=\left\{\frac{1}{\sqrt{3}}\left(\begin{array}{rr}
-1 & i-1 \\
i+1 & -1
\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{rr}
i-1 & -l \\
-l & -i-1
\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{rr}
-i-1 & 1 \\
-1 & i-1
\end{array}\right)\right\}
$$

Ramanujan Cayley digraphs

Example: Using $\langle\underbrace{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)}_{C}, \underbrace{\frac{1}{\sqrt{3}}\left(\begin{array}{cc}1 & 1-i \\ 1+i & -1\end{array}\right)}_{\tau}\rangle$,

$$
S=\left\{\frac{1}{\sqrt{3}}\left(\begin{array}{rr}
-1 & i-1 \\
i+1 & -1
\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{rr}
i-1 & -l \\
-l & -i-1
\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{rr}
-i-1 & 1 \\
-1 & i-1
\end{array}\right)\right\}
$$

and projecting S modulo 13 we obtain

Adjacency spectrum of $P S L_{2}\left(\mathbb{F}_{13}\right)$ with respect to $\left(\begin{array}{ll}12 & 9 \\ 7 & 12\end{array}\right),\left(\begin{array}{ll}6 \\ 8 & 8\end{array}\right),\left(\begin{array}{ll}4 & 12 \\ 1 & 7\end{array}\right)$

Adjacency spectrum of $P G L_{2}\left(\mathbb{F}_{17}\right)$ with respect to $\left(\begin{array}{ll}16 & 14 \\ 12 & 16\end{array}\right),\left(\begin{array}{cc}5 & 13 \\ 13 & 14\end{array}\right),\left(\begin{array}{ll}3 & 16 \\ 1 & 12\end{array}\right)$

Ramanujan complexes

- Recall T_{p+1} is a symmetric space for $U_{2}\left(\mathbb{Q}_{p}\right)\left(\right.$ and $\left.G L_{2}\left(\mathbb{Q}_{p}\right)\right)$.
- Recall T_{p+1} is a symmetric space for $U_{2}\left(\mathbb{Q}_{p}\right)$ (and $G L_{2}\left(\mathbb{Q}_{p}\right)$).
- Bruhat-Tits buildings are infinite, contractible simplicial complexes, which are symmetric spaces for higher dimensional p-adic Lie groups.
- Recall T_{p+1} is a symmetric space for $U_{2}\left(\mathbb{Q}_{p}\right)$ (and $G L_{2}\left(\mathbb{Q}_{p}\right)$).
- Bruhat-Tits buildings are infinite, contractible simplicial complexes, which are symmetric spaces for higher dimensional p-adic Lie groups.
- Ramanujan graphs are graphs with the same spectrum of their covering tree.
- Recall T_{p+1} is a symmetric space for $U_{2}\left(\mathbb{Q}_{p}\right)$ (and $G L_{2}\left(\mathbb{Q}_{p}\right)$).
- Bruhat-Tits buildings are infinite, contractible simplicial complexes, which are symmetric spaces for higher dimensional p-adic Lie groups.
- Ramanujan graphs are graphs with the same spectrum of their covering tree.
- Ramanujan complexes are complexes with the "same spectrum" as their covering building.
- Recall T_{p+1} is a symmetric space for $U_{2}\left(\mathbb{Q}_{p}\right)$ (and $G L_{2}\left(\mathbb{Q}_{p}\right)$).
- Bruhat-Tits buildings are infinite, contractible simplicial complexes, which are symmetric spaces for higher dimensional p-adic Lie groups.
- Ramanujan graphs are graphs with the same spectrum of their covering tree.
- Ramanujan complexes are complexes with the "same spectrum" as their covering building.
- Defined and constructed by Ballantine, Cartwright-Steger-Żuk, Li, Lubotzky-Samuels-Vishne, Sarveniazi, ...

Random walks

- Lubetzky-Peres '15: sharp cutoff on Ramanujan graphs:

Random walks

- Lubetzky-Peres '15: sharp cutoff on Ramanujan graphs: NBRW on a Ramanujan graph covers almost all vertices after $(1+\varepsilon) \log _{k-1}|V|$ steps.

Random walks

- Lubetzky-Peres '15: sharp cutoff on Ramanujan graphs: NBRW on a Ramanujan graph covers almost all vertices after $(1+\varepsilon) \log _{k-1}|V|$ steps.
- Main ingredient: the NBRW operator is almost normal: unitarily equivalent to 2×2 block-diagonal matrix.

Random walks

- Lubetzky-Peres '15: sharp cutoff on Ramanujan graphs: NBRW on a Ramanujan graph covers almost all vertices after $(1+\varepsilon) \log _{k-1}|V|$ steps.
- Main ingredient: the NBRW operator is almost normal: unitarily equivalent to 2×2 block-diagonal matrix.
- We say that if G is a $(k+1)$-Ramanujan graph, then $\operatorname{Line}(G)$ is a k-regular 2-normal Ramanujan digraph.
- Lubetzky-Peres '15: sharp cutoff on Ramanujan graphs: NBRW on a Ramanujan graph covers almost all vertices after $(1+\varepsilon) \log _{k-1}|V|$ steps.
- Main ingredient: the NBRW operator is almost normal: unitarily equivalent to 2×2 block-diagonal matrix.
- We say that if G is a $(k+1)$-Ramanujan graph, then Line (G) is a k-regular 2-normal Ramanujan digraph.
- [Lubetzky-Lubotzky-P, Kamber]: The 1-geodesic flow on a Ramanujan complex of dimension d is a $(d+1)$-normal Ramanujan digraph.
- Lubetzky-Peres '15: sharp cutoff on Ramanujan graphs: NBRW on a Ramanujan graph covers almost all vertices after $(1+\varepsilon) \log _{k-1}|V|$ steps.
- Main ingredient: the NBRW operator is almost normal: unitarily equivalent to 2×2 block-diagonal matrix.
- We say that if G is a $(k+1)$-Ramanujan graph, then Line (G) is a k-regular 2-normal Ramanujan digraph.
- [Lubetzky-Lubotzky-P, Kamber]: The 1-geodesic flow on a Ramanujan complex of dimension d is a $(d+1)$-normal Ramanujan digraph.
- It has more eigenvalues:

Spectrum of 1-geodesic flow on 2-dimensional building /

Ramanujan complex

Ramanujan digraphs

- The 1 -geodesic flow on a Ramanujan complex of dimension d is a $(d+1)$-normal Ramanujan digraph.
- The 1 -geodesic flow on a Ramanujan complex of dimension d is a $(d+1)$-normal Ramanujan digraph.
- The d-geodesic flow on a Ramanujan complex is a $(d+1)$!-normal Ramanujan digraph.
- The 1 -geodesic flow on a Ramanujan complex of dimension d is a $(d+1)$-normal Ramanujan digraph.
- The d-geodesic flow on a Ramanujan complex is a $(d+1)$!-normal Ramanujan digraph.
- Corollaries: sharp cutoff, optimal diameter, Riemann Hypothesis.
- The 1 -geodesic flow on a Ramanujan complex of dimension d is a $(d+1)$-normal Ramanujan digraph.
- The d-geodesic flow on a Ramanujan complex is a $(d+1)$!-normal Ramanujan digraph.
- Corollaries: sharp cutoff, optimal diameter, Riemann Hypothesis.
- Theorem (Lubetzky-Lubotzky-P): Any collision-free operator on the Bruhat-Tits building of a semisimple p-adic Lie group induces an r-normal Ramanujan digraph on Ramanujan quotients.
- The 1 -geodesic flow on a Ramanujan complex of dimension d is a $(d+1)$-normal Ramanujan digraph.
- The d-geodesic flow on a Ramanujan complex is a $(d+1)$!-normal Ramanujan digraph.
- Corollaries: sharp cutoff, optimal diameter, Riemann Hypothesis.
- Theorem (Lubetzky-Lubotzky-P): Any collision-free operator on the Bruhat-Tits building of a semisimple p-adic Lie group induces an r-normal Ramanujan digraph on Ramanujan quotients.
- Collision-free: there is at most one directed path from x to y.
- The 1 -geodesic flow on a Ramanujan complex of dimension d is a $(d+1)$-normal Ramanujan digraph.
- The d-geodesic flow on a Ramanujan complex is a $(d+1)$!-normal Ramanujan digraph.
- Corollaries: sharp cutoff, optimal diameter, Riemann Hypothesis.
- Theorem (Lubetzky-Lubotzky-P): Any collision-free operator on the Bruhat-Tits building of a semisimple p-adic Lie group induces an r-normal Ramanujan digraph on Ramanujan quotients.
- Collision-free: there is at most one directed path from x to y.
- E.g.: NBRW on a tree.

Random digraphs

Random digraphs

- How does the spectrum of a random regular digraph looks like?

Random digraphs

- How does the spectrum of a random regular digraph looks like?

Random digraphs

Random digraphs

- Conjecture: For any $\varepsilon>0$, the probability that

$$
\operatorname{Spec}(A) \subseteq\{z \in \mathbb{C}||z| \leq \sqrt{k}+\varepsilon \text { or } z=k\}
$$

goes to 1 as $|V| \rightarrow \infty$.

- Conjecture: For any $\varepsilon>0$, the probability that

$$
\operatorname{Spec}(A) \subseteq\{z \in \mathbb{C}||z| \leq \sqrt{k}+\varepsilon \text { or } z=k\}
$$

goes to 1 as $|V| \rightarrow \infty$.

- We can show (P-Puder):

$$
\operatorname{Prob}[\operatorname{Spec}(A) \subseteq\{z \in \mathbb{C}||z| \leq \sqrt{2 k} \text { or } z=k\}] \xrightarrow{|v| \rightarrow \infty} 1
$$

- Alon-Boppana theorem?
- DeBruijn digraphs: have $\operatorname{Spec}(A)=\{0, k\}$ (and arbitrarily large $|V|$).

- Add more assumptions - r-normality, convergence, ...

Thank you!

