Combinatorial curvature and isoperimetric constants on infinite planar graphs

Byung-Geun Oh (Hanyang University, Korea)

University of Potsdam Analysis and Geometry on Graphs and Manifolds

July 03, 2017

- G: a graph with the vertex set V and the edge set E such that
 - *G* is undirected, connected, and simple;
 - G is embedded into a 2-mainfold Ω locally finitely;
 - every face of G (a component of Ω \ G) is homeomorphic to the unit disk and the boundary of each face is homeomorphic to a circle or a straight line; and
 - $3 \le \deg v < \infty$ and $3 \le \deg f \le \infty$ for every $v \in V$ and $f \in F$, where F is set of faces of G.

In most cases we also assume that

- *G* is infinite and $\Omega = \mathbb{R}^2$; and
- $3 \leq \deg f < \infty$ for every $f \in F$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- G: a graph with the vertex set V and the edge set E such that
 - G is undirected, connected, and simple;
 - G is embedded into a 2-mainfold Ω locally finitely;
 - every face of G (a component of Ω \ G) is homeomorphic to the unit disk and the boundary of each face is homeomorphic to a circle or a straight line; and
 - $3 \le \deg v < \infty$ and $3 \le \deg f \le \infty$ for every $v \in V$ and $f \in F$, where F is set of faces of G.

In most cases we also assume that

- G is infinite and $\Omega = \mathbb{R}^2$; and
- $3 \leq \deg f < \infty$ for every $f \in F$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- G: a graph with the vertex set V and the edge set E such that
 - G is undirected, connected, and simple;
 - G is embedded into a 2-mainfold Ω locally finitely;
 - every face of G (a component of Ω \ G) is homeomorphic to the unit disk and the boundary of each face is homeomorphic to a circle or a straight line; and
 - $3 \le \deg v < \infty$ and $3 \le \deg f \le \infty$ for every $v \in V$ and $f \in F$, where F is set of faces of G.

In most cases we also assume that

- *G* is infinite and $\Omega = \mathbb{R}^2$; and
- $3 \leq \deg f < \infty$ for every $f \in F$.

イロト イポト イヨト イヨト

- G: a graph with the vertex set V and the edge set E such that
 - G is undirected, connected, and simple;
 - G is embedded into a 2-mainfold Ω locally finitely;
 - every face of G (a component of Ω \ G) is homeomorphic to the unit disk and the boundary of each face is homeomorphic to a circle or a straight line; and
 - $3 \le \deg v < \infty$ and $3 \le \deg f \le \infty$ for every $v \in V$ and $f \in F$, where F is set of faces of G.

In most cases we also assume that

- *G* is infinite and $\Omega = \mathbb{R}^2$; and
- $3 \leq \deg f < \infty$ for every $f \in F$.

< ロ > < 同 > < 回 > < 回 > < □ > <

- G: a graph with the vertex set V and the edge set E such that
 - G is undirected, connected, and simple;
 - G is embedded into a 2-mainfold Ω locally finitely;
 - every face of G (a component of Ω \ G) is homeomorphic to the unit disk and the boundary of each face is homeomorphic to a circle or a straight line; and
 - $3 \le \deg v < \infty$ and $3 \le \deg f \le \infty$ for every $v \in V$ and $f \in F$, where F is set of faces of G.

In most cases we also assume that

- *G* is infinite and $\Omega = \mathbb{R}^2$; and
- $3 \leq \deg f < \infty$ for every $f \in F$.

- G: a graph with the vertex set V and the edge set E such that
 - G is undirected, connected, and simple;
 - G is embedded into a 2-mainfold Ω locally finitely;
 - every face of G (a component of Ω \ G) is homeomorphic to the unit disk and the boundary of each face is homeomorphic to a circle or a straight line; and
 - $3 \le \deg v < \infty$ and $3 \le \deg f \le \infty$ for every $v \in V$ and $f \in F$, where F is set of faces of G.

In most cases we also assume that

- G is infinite and $\Omega = \mathbb{R}^2$; and
- $3 \leq \deg f < \infty$ for every $f \in F$.

イロン 不同 とくほう イロン

- G: a graph with the vertex set V and the edge set E such that
 - G is undirected, connected, and simple;
 - G is embedded into a 2-mainfold Ω locally finitely;
 - every face of G (a component of Ω \ G) is homeomorphic to the unit disk and the boundary of each face is homeomorphic to a circle or a straight line; and
 - $3 \le \deg v < \infty$ and $3 \le \deg f \le \infty$ for every $v \in V$ and $f \in F$, where F is set of faces of G.

In most cases we also assume that

- *G* is infinite and $\Omega = \mathbb{R}^2$; and
- $3 \leq \deg f < \infty$ for every $f \in F$.

Under these assumptions, one can check that G is 2-connected; that is, G minus a vertex still remains connected.

イロト イポト イヨト イヨト

- Note that in our setting two different faces may share more than one vertex without sharing an edge.
- But if we further assume that if the intersection of two faces is empty, or a vertex, or an edge, then *G* becomes a 3-connected graph; i.e., *G* minus any two vertices is connected.
- Such G is a tessellation graph or an edge graph of the plain tiling.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- Note that in our setting two different faces may share more than one vertex without sharing an edge.
- But if we further assume that if the intersection of two faces is empty, or a vertex, or an edge, then *G* becomes a 3-connected graph; i.e., *G* minus any two vertices is connected.
- Such G is a tessellation graph or an edge graph of the plain tiling.

- Note that in our setting two different faces may share more than one vertex without sharing an edge.
- But if we further assume that if the intersection of two faces is empty, or a vertex, or an edge, then *G* becomes a 3-connected graph; i.e., *G* minus any two vertices is connected.
- Such G is a tessellation graph or an edge graph of the plain tiling.

・ 同 ト ・ ヨ ト ・ ヨ ト

- A subgraph S ⊂ G is called *induced* if for every v, w ∈ V(S), vw ∈ E implies vw ∈ E(S).
- We define the *face set* F(S) of S ⊂ G as the *subset* of F such that f ∈ F(S) if and only if f ∈ F and f is a component of Ω \ S.
- For the boundaries of S, we define

 ∂S : the set of edges connecting S to $G \setminus S$ bd S: the set of edges in E(S) that is incident to a face in $F \setminus F(S)$ d_0S : the set of vertices in V(S) which has a neighbor in $V \setminus V(S)$ d_1S : the set of vertices in $V \setminus V(S)$ which has a neighbor in V(S)

< ロ > < 同 > < 回 > < 回 > .

- A subgraph S ⊂ G is called *induced* if for every v, w ∈ V(S), vw ∈ E implies vw ∈ E(S).
- We define the *face set* F(S) of S ⊂ G as the *subset* of F such that f ∈ F(S) if and only if f ∈ F and f is a component of Ω \ S.
- For the boundaries of S, we define

 ∂S : the set of edges connecting S to $G \setminus S$ bd S: the set of edges in E(S) that is incident to a face in $F \setminus F(S)$ d_0S : the set of vertices in V(S) which has a neighbor in $V \setminus V(S)$ d_1S : the set of vertices in $V \setminus V(S)$ which has a neighbor in V(S)

- A subgraph S ⊂ G is called *induced* if for every v, w ∈ V(S), vw ∈ E implies vw ∈ E(S).
- We define the face set F(S) of S ⊂ G as the subset of F such that f ∈ F(S) if and only if f ∈ F and f is a component of Ω \ S.
- For the boundaries of S, we define

 ∂S : the set of edges connecting S to $G \setminus S$ bd S: the set of edges in E(S) that is incident to a face in $F \setminus F(S)$ d_0S : the set of vertices in V(S) which has a neighbor in $V \setminus V(S)$ d_1S : the set of vertices in $V \setminus V(S)$ which has a neighbor in V(S)

・ロト ・四ト ・ヨト ・ヨト

- A subgraph S ⊂ G is called *induced* if for every v, w ∈ V(S), vw ∈ E implies vw ∈ E(S).
- We define the *face set* F(S) of S ⊂ G as the *subset* of F such that f ∈ F(S) if and only if f ∈ F and f is a component of Ω \ S.
- For the boundaries of S, we define

 ∂S : the set of edges connecting *S* to $G \setminus S$

bd S: the set of edges in E(S) that is incident to a face in $F \setminus F(S)$ d_0S : the set of vertices in V(S) which has a neighbor in $V \setminus V(S)$ d_1S : the set of vertices in $V \setminus V(S)$ which has a neighbor in V(S)

イロト イポト イヨト イヨト

- A subgraph S ⊂ G is called *induced* if for every v, w ∈ V(S), vw ∈ E implies vw ∈ E(S).
- We define the *face set* F(S) of S ⊂ G as the *subset* of F such that f ∈ F(S) if and only if f ∈ F and f is a component of Ω \ S.
- For the boundaries of S, we define

 ∂S : the set of edges connecting S to $G \setminus S$

bd S: the set of edges in E(S) that is incident to a face in $F \setminus F(S)$ d_0S : the set of vertices in V(S) which has a neighbor in $V \setminus V(S)$ d_1S : the set of vertices in $V \setminus V(S)$ which has a neighbor in V(S)

イロン 不同 とくほう イロン

- A subgraph S ⊂ G is called *induced* if for every v, w ∈ V(S), vw ∈ E implies vw ∈ E(S).
- We define the *face set* F(S) of S ⊂ G as the *subset* of F such that f ∈ F(S) if and only if f ∈ F and f is a component of Ω \ S.
- For the boundaries of S, we define

 ∂S : the set of edges connecting *S* to $G \setminus S$

- bd S: the set of edges in E(S) that is incident to a face in $F \setminus F(S)$ d_0S : the set of vertices in V(S) which has a neighbor in $V \setminus V(S)$
- d_1S : the set of vertices in $V \setminus V(S)$ which has a neighbor in V(S)

< ロ > < 同 > < 回 > < 回 > < □ > <

- A subgraph S ⊂ G is called *induced* if for every v, w ∈ V(S), vw ∈ E implies vw ∈ E(S).
- We define the *face set* F(S) of S ⊂ G as the *subset* of F such that f ∈ F(S) if and only if f ∈ F and f is a component of Ω \ S.
- For the boundaries of S, we define

 ∂S : the set of edges connecting S to $G \setminus S$

- bd S: the set of edges in E(S) that is incident to a face in $F \setminus F(S)$
- d_0S : the set of vertices in V(S) which has a neighbor in $V \setminus V(S)$ d_1S : the set of vertices in $V \setminus V(S)$ which has a neighbor in V(S)

< ロ > < 同 > < 回 > < 回 > < □ > <

Isoperimetric constants of G are defined by

where $|\cdot|$ denotes the cardinality, $Vol(S) = \sum_{v \in V(S)} \deg v$, and the infimums are taken over all finite subgraphs $S \subset G$.

- Isoperimetric constants are discrete analogues of Cheeger's constant in Differential Geometry.
- We say that G satisfies a strong isoperimetric inequality if an isoperimetric constant is positive.
- One can check that
 - $\imath(G^*) = \imath^*(G)$, where G^* is the dual graph of G
 - $j_0(G) = j_1(G)/(1+j_1(G))$
 - $\iota_p(G) > 0 \iff \iota(G) > 0$
 - $\mathfrak{j}_0(G) > 0 \Longrightarrow \mathfrak{i}(G) > 0, \mathfrak{i}_p(G) > 0, \mathfrak{i}^*(G) > 0.$

- (同) (回) (回) - 回

- Isoperimetric constants are discrete analogues of Cheeger's constant in Differential Geometry.
- We say that G satisfies a strong isoperimetric inequality if an isoperimetric constant is positive.
- One can check that
 - $\imath(G^*) = \imath^*(G)$, where G^* is the dual graph of G
 - $j_0(G) = j_1(G)/(1+j_1(G))$
 - $\iota_p(G) > 0 \iff \iota(G) > 0$
 - $\mathfrak{j}_0(G) > 0 \Longrightarrow \mathfrak{i}(G) > 0, \mathfrak{i}_p(G) > 0, \mathfrak{i}^*(G) > 0.$

- Isoperimetric constants are discrete analogues of Cheeger's constant in Differential Geometry.
- We say that G satisfies a strong isoperimetric inequality if an isoperimetric constant is positive.
- One can check that
 - $\imath(G^*) = \imath^*(G)$, where G^* is the dual graph of G
 - $j_0(G) = j_1(G)/(1+j_1(G))$
 - $-\imath_p(G)>0 \Longleftrightarrow \imath(G)>0$
 - $\mathfrak{j}_0(G) > 0 \Longrightarrow \mathfrak{i}(G) > 0, \mathfrak{i}_p(G) > 0, \mathfrak{i}^*(G) > 0.$

イロト 不得 とくほ とくほ とうほう

- Isoperimetric constants are discrete analogues of Cheeger's constant in Differential Geometry.
- We say that G satisfies a strong isoperimetric inequality if an isoperimetric constant is positive.
- One can check that
 - $\imath(G^*) = \imath^*(G)$, where G^* is the dual graph of G
 - $j_0(G) = j_1(G)/(1+j_1(G))$
 - $\iota_p(G) > 0 \iff \iota(G) > 0$
 - $\mathfrak{j}_0(G) > 0 \Longrightarrow \mathfrak{i}(G) > 0, \mathfrak{i}_p(G) > 0, \mathfrak{i}^*(G) > 0.$

- Isoperimetric constants are discrete analogues of Cheeger's constant in Differential Geometry.
- We say that G satisfies a strong isoperimetric inequality if an isoperimetric constant is positive.
- One can check that
 - $\imath(G^*) = \imath^*(G)$, where G^* is the dual graph of G
 - $j_0(G) = j_1(G)/(1+j_1(G))$
 - $\iota_p(G) > 0 \iff \iota(G) > 0$
 - $\mathfrak{j}_0(G) > 0 \Longrightarrow \mathfrak{i}(G) > 0, \mathfrak{i}_p(G) > 0, \mathfrak{i}^*(G) > 0.$

- Isoperimetric constants are discrete analogues of Cheeger's constant in Differential Geometry.
- We say that G satisfies a strong isoperimetric inequality if an isoperimetric constant is positive.
- One can check that
 - $\imath(G^*) = \imath^*(G)$, where G^* is the dual graph of G
 - $j_0(G) = j_1(G)/(1+j_1(G))$
 - $\iota_p(G) > 0 \iff \iota(G) > 0$

イロト 不得 とくほ とくほ とうほう

Combinatorial Curvature

• For each $v \in V$, we define the *vertex curvature* at v by

$$\phi(v) := 1 - \frac{\deg v}{2} + \sum_{f: v \in V(f)} \frac{1}{\deg f}.$$

• For finite subgraph $S \subset G$, we define

$$\phi(S) = \sum_{v \in V(S)} \phi(v).$$

• Other combinatorial curvatures: face curvature, edge curvature, corner curvature, etc.

< 回 > < 回 > < 回 >

Combinatorial Curvature

• For each $v \in V$, we define the *vertex curvature* at v by

$$\phi(\mathbf{v}) := 1 - \frac{\deg \mathbf{v}}{2} + \sum_{f: \mathbf{v} \in \mathbf{V}(f)} \frac{1}{\deg f}.$$

• For finite subgraph $S \subset G$, we define

$$\phi(S) = \sum_{v \in V(S)} \phi(v).$$

• Other combinatorial curvatures: face curvature, edge curvature, corner curvature, etc.

< 回 > < 回 > < 回 >

• For each $v \in V$, we define the *vertex curvature* at v by

$$\phi(\mathbf{v}) := 1 - \frac{\deg \mathbf{v}}{2} + \sum_{f: \mathbf{v} \in \mathbf{V}(f)} \frac{1}{\deg f}.$$

• For finite subgraph $S \subset G$, we define

$$\phi(S) = \sum_{v \in V(S)} \phi(v).$$

 Other combinatorial curvatures: face curvature, edge curvature, corner curvature, etc.

・ 同 ト ・ ヨ ト ・ ヨ ト

Meaning of Combinatorial Curvature

- For each f ∈ F, we associate a Euclidean regular (deg f)-gon with unit edge length, and paste them along edges exactly the way that the faces of G are pasted.
- Then the resulting surface Γ is a surface of *polyhedral* metric, which is a kind of Aleksandrov surfaces. Note that G is naturally embedded into Γ.
- Γ is locally Euclidean except at the points corresponding to the vertices of G, and the total angle at v ∈ V(G) ⊂ Γ is

$$T(v) = \sum_{f:v \in V(f)} \frac{\pi(\deg f - 2)}{\deg f} = \pi \cdot \deg v - 2\pi \sum_{f:v \in V(f)} \frac{1}{\deg f},$$

hence v carries an atomic curvature $2\pi - T(v) = 2\pi\phi(v)$.

Meaning of Combinatorial Curvature

- For each f ∈ F, we associate a Euclidean regular (deg f)-gon with unit edge length, and paste them along edges exactly the way that the faces of G are pasted.
- Then the resulting surface Γ is a surface of *polyhedral* metric, which is a kind of Aleksandrov surfaces. Note that G is naturally embedded into Γ.
- Γ is locally Euclidean except at the points corresponding to the vertices of G, and the total angle at v ∈ V(G) ⊂ Γ is

$$T(v) = \sum_{f:v \in V(f)} \frac{\pi(\deg f - 2)}{\deg f} = \pi \cdot \deg v - 2\pi \sum_{f:v \in V(f)} \frac{1}{\deg f},$$

イロト イポト イヨト イヨト

hence v carries an atomic curvature $2\pi - T(v) = 2\pi\phi(v)$.

Meaning of Combinatorial Curvature

- For each f ∈ F, we associate a Euclidean regular (deg f)-gon with unit edge length, and paste them along edges exactly the way that the faces of G are pasted.
- Then the resulting surface Γ is a surface of *polyhedral* metric, which is a kind of Aleksandrov surfaces. Note that G is naturally embedded into Γ.
- Γ is locally Euclidean except at the points corresponding to the vertices of G, and the *total angle* at v ∈ V(G) ⊂ Γ is

$$T(v) = \sum_{f:v \in V(f)} \frac{\pi(\deg f - 2)}{\deg f} = \pi \cdot \deg v - 2\pi \sum_{f:v \in V(f)} \frac{1}{\deg f},$$

イロン 不同 とくほう イロン

hence v carries an atomic curvature $2\pi - T(v) = 2\pi\phi(v)$.

Theorem (Combinatorial Gauss-Bonnet Theorem-Basic Form)

Suppose G is a finite connected simple graph embedded into a compact 2-manifold Ω . Then we have

$$\phi(G) = \sum_{v \in V(G)} \phi(v) = \chi(\Omega).$$

- There are other forms of Combinatorial Gauss-Bonnet Theorem in literature.
- Using the Combinatorial Gauss-Bonnet Theorem one can deduce many useful theorems. For example, using the basic form above, one can prove the famous theorem that every finite planar graph has a vertex of degree at most 5.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Combinatorial Gauss-Bonnet Theorem-Basic Form)

Suppose G is a finite connected simple graph embedded into a compact 2-manifold Ω . Then we have

$$\phi(G) = \sum_{v \in V(G)} \phi(v) = \chi(\Omega).$$

- There are other forms of Combinatorial Gauss-Bonnet Theorem in literature.
- Using the Combinatorial Gauss-Bonnet Theorem one can deduce many useful theorems. For example, using the basic form above, one can prove the famous theorem that every finite planar graph has a vertex of degree at most 5.

< 回 > < 回 > < 回 >

Theorem (Combinatorial Gauss-Bonnet Theorem-Basic Form)

Suppose G is a finite connected simple graph embedded into a compact 2-manifold Ω . Then we have

$$\phi(G) = \sum_{v \in V(G)} \phi(v) = \chi(\Omega).$$

- There are other forms of Combinatorial Gauss-Bonnet Theorem in literature.
- Using the Combinatorial Gauss-Bonnet Theorem one can deduce many useful theorems. For example, using the basic form above, one can prove the famous theorem that every finite planar graph has a vertex of degree at most 5.

Negatively Curved Graphs

Let G be a connected simple infinite graph embedded into \mathbb{R}^2 . The following works were done independently.

Theorem (Żuk, 1997)

If $\phi(v) < 0$ for every $v \in V(G^*)$, then $\imath_p(G) > 0$.

Theorem (Woess, 1998)

If $\overline{\phi}(G) := \limsup_{|V(S)| \to \infty} \frac{\phi(S)}{|V(S)|} < 0$, where the limit superior is taken over all connected and finite subgraphs *S*, then $\imath_p(G) > 0$.

Theorem (Higuchi, 2001)

If $\phi(v) < 0$ for every $v \in V(G)$, then $i^*(G) > 0$.

イロト イポト イヨト イヨト

Let G be a connected simple infinite graph embedded into \mathbb{R}^2 . The following works were done independently.

Theorem (Żuk, 1997)

If $\phi(v) < 0$ for every $v \in V(G^*)$, then $\imath_p(G) > 0$.

Theorem (Woess, 1998)

If $\overline{\phi}(G) := \limsup_{|V(S)| \to \infty} \frac{\phi(S)}{|V(S)|} < 0$, where the limit superior is taken over all connected and finite subgraphs *S*, then $i_p(G) > 0$.

Theorem (Higuchi, 2001)

If $\phi(v) < 0$ for every $v \in V(G)$, then $i^*(G) > 0$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Let G be a connected simple infinite graph embedded into \mathbb{R}^2 . The following works were done independently.

If
$$\phi(v) < 0$$
 for every $v \in V(G^*)$, then $\imath_p(G) > 0$.

Theorem (Woess, 1998)

If $\overline{\phi}(G) := \limsup_{|V(S)| \to \infty} \frac{\phi(S)}{|V(S)|} < 0$, where the limit superior is taken over all connected and finite subgraphs *S*, then $i_p(G) > 0$.

Theorem (Higuchi, 2001)

If $\phi(v) < 0$ for every $v \in V(G)$, then $i^*(G) > 0$.

ヘロト ヘヨト ヘヨト ヘヨト

Let G be a connected simple infinite graph embedded into \mathbb{R}^2 . The following works were done independently.

If
$$\phi(v) < 0$$
 for every $v \in V(G^*)$, then $\imath_p(G) > 0$.

Theorem (Woess, 1998)

If $\overline{\phi}(G) := \limsup_{|V(S)| \to \infty} \frac{\phi(S)}{|V(S)|} < 0$, where the limit superior is taken over all connected and finite subgraphs *S*, then $i_p(G) > 0$.

Theorem (Higuchi, 2001)

If
$$\phi(v) < 0$$
 for every $v \in V(G)$, then $i^*(G) > 0$.

- 4 同 6 4 日 6 4 日 6

Negatively Curved Graphs

We also have

Theorem (O., 2014)

Suppose G and G^* are 2-connected simple infinite planar graphs. Then

1. $j_0(G) > 0 \iff j_0(G^*) > 0$

- 2. If $\overline{\phi}(G) := \limsup_{|V(S)| \to \infty} \frac{\phi(S)}{|V(S)|} < 0$ and G is 3-connected, then $j_0(G) > 0$. Therefore in this case we also have i(G) > 0, $i^*(G) > 0$, $j_0(G^*) > 0$, $i(G^*) > 0$, and $i^*(G^*) > 0$.
- If i*(G) > 0 and the face degrees of G are bounded by above, then G is Gromov hyperbolic.

Theorem (O., and Seo, 2016)

The above result can be extended to planar graphs with more than one end.

Negatively Curved Graphs

We also have

Theorem (O., 2014)

Suppose G and G^* are 2-connected simple infinite planar graphs. Then

1. $j_0(G) > 0 \iff j_0(G^*) > 0$

- 2. If $\overline{\phi}(G) := \limsup_{|V(S)| \to \infty} \frac{\phi(S)}{|V(S)|} < 0$ and G is 3-connected, then $j_0(G) > 0$. Therefore in this case we also have i(G) > 0, $i^*(G) > 0$, $j_0(G^*) > 0$, $i(G^*) > 0$, and $i^*(G^*) > 0$.
- 3. If $i^*(G) > 0$ and the face degrees of G are bounded by above, then G is Gromov hyperbolic.

Theorem (O., and Seo, 2016)

The above result can be extended to planar graphs with more than one end.

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs

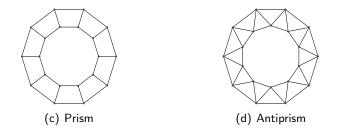
Theorem (DeVos and Mohar, 2007. Myer's Theorem for Tessellation)

Suppose G is a connected simple graph embedded into a 2-manifold without boundary. If $\phi(v) > 0$ for every $v \in V(G)$, then G is finite. Moreover, if G is different from prisms or antiprisms, then $|V(G)| \leq 3444$.

伺 ト イ ヨ ト イ ヨ ト

Theorem (DeVos and Mohar, 2007. Myer's Theorem for Tessellation)

Suppose G is a connected simple graph embedded into a 2-manifold without boundary. If $\phi(v) > 0$ for every $v \in V(G)$, then G is finite. Moreover, if G is different from prisms or antiprisms, then $|V(G)| \leq 3444$.



伺 ト く ヨ ト く ヨ ト

Theorem (DeVos and Mohar, 2007. Myer's Theorem for Tessellation)

Suppose G is a connected simple graph embedded into a 2-manifold without boundary. If $\phi(v) > 0$ for every $v \in V(G)$, then G is finite. Moreover, if G is different from prisms or antiprisms, then $|V(G)| \leq 3444$.

Question(asked by DeVos and Mohar): what is the best constant C_0 that can take the place of 3444 in the previous statement?

白 ト イヨ ト イヨ ト

The following are the known bounds for C_0 .

 $138 \le C_0$ (Réti, Bitay, and Kosztolányi , 2007) $C_0 < 580$ (Zhang, 2008) $208 \le C_0$ (Nicholson and Sneddon, 2008) $C_0 \le 380$ (O., 2017)

Thus we know that $208 \le C_0 \le 380$, but the exact value of C_0 is not known yet.

(4 同) (4 回) (4 \Pi) (4 \Pi)

Thus we know that $208 \le C_0 \le 380$, but the exact value of C_0 is not known yet.

(4 同) (4 回) (4 \Pi) (4 \Pi)

Thus we know that $208 \le C_0 \le 380$, but the exact value of C_0 is not known yet.

- 4 同 ト 4 回 ト -

Thus we know that $208 \le C_0 \le 380$, but the exact value of C_0 is not known yet.

- 4 同 ト 4 回 ト -

Thus we know that $208 \le C_0 \le 380$, but the exact value of C_0 is not known yet.

- 4 同 ト 4 回 ト -

Thus we know that $208 \le C_0 \le 380$, but the exact value of C_0 is not known yet.

・ 同 ト ・ ヨ ト ・ ヨ ト

The following theorems are also worth to mention:

Theorem (Chen, 2009)

Suppose G is a connected simple infinite graph embedded into a 2-manifold without boundary. If $\phi(v) \ge 0$ for every $v \in V$, then $\phi(v) = 0$ for all $v \in V$ except finitely many.

Theorem (Hua and Su, preprint)

Under the same assumption as above, we have

$$\phi(G) = \sum_{v \in V} \phi(v) \ge \frac{1}{12}.$$

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

The following theorems are also worth to mention:

Theorem (Chen, 2009)

Suppose G is a connected simple infinite graph embedded into a 2-manifold without boundary. If $\phi(v) \ge 0$ for every $v \in V$, then $\phi(v) = 0$ for all $v \in V$ except finitely many.

Theorem (Hua and Su, preprint)

Under the same assumption as above, we have

$$\phi(G) = \sum_{v \in V} \phi(v) \ge \frac{1}{12}.$$

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

The following theorems are also worth to mention:

Theorem (Chen, 2009)

Suppose G is a connected simple infinite graph embedded into a 2-manifold without boundary. If $\phi(v) \ge 0$ for every $v \in V$, then $\phi(v) = 0$ for all $v \in V$ except finitely many.

Theorem (Hua and Su, preprint)

Under the same assumption as above, we have

$$\phi(G) = \sum_{v \in V} \phi(v) \ge \frac{1}{12}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be a simple graph embedded into \mathbb{R}^2 such that deg v = pand deg f = q for every $v \in V$ and $f \in F$, where p, q are natural numbers greater than or equal to 3. Such G will be called a (p,q)-regular graph.

CASE I:
$$\frac{1}{p} + \frac{1}{q} > \frac{1}{2}$$

In this case G is finite and one of the platonic solids; i.e., G is one of the tetrahedron, the octahedron, the icosahedron, the cube, or the dodecahedron.

・ 同 ト ・ 国 ト ・ 国 ト

Let G be a simple graph embedded into \mathbb{R}^2 such that deg v = pand deg f = q for every $v \in V$ and $f \in F$, where p, q are natural numbers greater than or equal to 3. Such G will be called a (p,q)-regular graph.

$$\mathsf{CASE} \Vdash \frac{1}{p} + \frac{1}{q} > \frac{1}{2}$$

In this case G is finite and one of the platonic solids; i.e., G is one of the tetrahedron, the octahedron, the icosahedron, the cube, or the dodecahedron.

・ 同 ト ・ 国 ト ・ 国 ト

Let G be a simple graph embedded into \mathbb{R}^2 such that deg v = pand deg f = q for every $v \in V$ and $f \in F$, where p, q are natural numbers greater than or equal to 3. Such G will be called a (p,q)-regular graph.

$$\mathsf{CASE} \Vdash \frac{1}{p} + \frac{1}{q} > \frac{1}{2}$$

In this case G is finite and one of the platonic solids; i.e., G is one of the tetrahedron, the octahedron, the icosahedron, the cube, or the dodecahedron.

Let G be a simple graph embedded into \mathbb{R}^2 such that deg v = pand deg f = q for every $v \in V$ and $f \in F$, where p, q are natural numbers greater than or equal to 3. Such G will be called a (p,q)-regular graph.

CASE I:
$$\frac{1}{p} + \frac{1}{q} > \frac{1}{2}$$

In this case G is finite and one of the platonic solids; i.e., G is one of the tetrahedron, the octahedron, the icosahedron, the cube, or the dodecahedron.

CASE II:
$$\frac{1}{p} + \frac{1}{q} = \frac{1}{2}$$

In this case G is infinite and one of the regular tilings of the plane; i.e., G is one of the regular triangulation of the plane, the square lattice, or the hexagonal honeycomb. Consequently, all isoperimetric constants of G are zero in this case.

・ 戸 ・ ・ ヨ ・ ・ 日 ・

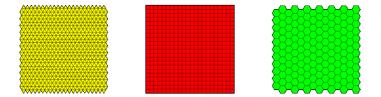
CASE II:
$$\frac{1}{p} + \frac{1}{q} = \frac{1}{2}$$

In this case G is infinite and one of the regular tilings of the plane; i.e., G is one of the regular triangulation of the plane, the square lattice, or the hexagonal honeycomb. Consequently, all isoperimetric constants of G are zero in this case.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

CASE II:
$$\frac{1}{p} + \frac{1}{q} = \frac{1}{2}$$

In this case G is infinite and one of the regular tilings of the plane; i.e., G is one of the regular triangulation of the plane, the square lattice, or the hexagonal honeycomb. Consequently, all isoperimetric constants of G are zero in this case.



A B A A B A

CASE III:
$$\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$$

In this case G is infinite and a tessellation graph of the hyperbolic plane. Moreover, we have

Theorem (Häggström, Jonasson, and Lyons, (2002) & Higuchi and Shirai (2003))

Suppose G is a (p,q)-regular graph with $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$. Then

$$\iota_p(G) = \frac{p-2}{p} \sqrt{1 - \frac{4}{(p-2)(q-2)}},$$
$$\iota^*(G) = (q-2) \sqrt{1 - \frac{4}{(p-2)(q-2)}}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

CASE III:
$$\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$$

In this case ${\cal G}$ is infinite and a tessellation graph of the hyperbolic plane. Moreover, we have

Theorem (Häggström, Jonasson, and Lyons, (2002) & Higuchi and Shirai (2003))

Suppose G is a (p,q)-regular graph with $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$. Then

$$i_p(G) = \frac{p-2}{p} \sqrt{1 - \frac{4}{(p-2)(q-2)}},$$
$$i^*(G) = (q-2) \sqrt{1 - \frac{4}{(p-2)(q-2)}}.$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

CASE III:
$$\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$$

In this case ${\it G}$ is infinite and a tessellation graph of the hyperbolic plane. Moreover, we have

Theorem (Häggström, Jonasson, and Lyons, (2002) & Higuchi and Shirai (2003))

Suppose G is a (p,q)-regular graph with $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$. Then

$$i_p(G) = rac{p-2}{p} \sqrt{1 - rac{4}{(p-2)(q-2)}},$$

 $i^*(G) = (q-2) \sqrt{1 - rac{4}{(p-2)(q-2)}}.$

Let $\mathcal{G}(p,q)$ be the collection of (infinite) simple planar graphs such that deg $v \ge p$ and deg $f \ge q$. If q = 3, we will use the notation $\mathcal{G}(p,3) = \mathcal{G}(p)$.

Theorem (Dodziuk, 1984)

If $G \in \mathcal{G}(7)$, then $i^*(G) \geq \frac{1}{26}$.

Theorem (Mohar, 1992)

If $G \in \mathcal{G}(p)$ for some $p \ge 7$, then $i^*(G) \ge \frac{p-6}{p-4}$.

Theorem (Lawrencenko, Plummer, and Zha, 2002)

If $G \in \mathcal{G}(p)$ for some $p \ge 7$, then

$$i^*(G) \ge \frac{(p-6)(p^2-8p+15)}{(p-4)(p^2-8p+13)}.$$

・ 戸 と ・ ヨ と ・ モ と …

Let $\mathcal{G}(p,q)$ be the collection of (infinite) simple planar graphs such that deg $v \ge p$ and deg $f \ge q$. If q = 3, we will use the notation $\mathcal{G}(p,3) = \mathcal{G}(p)$.

Theorem (Dodziuk, 1984)

If $G \in \mathcal{G}(7)$, then $i^*(G) \geq \frac{1}{26}$.

Theorem (Mohar, 1992)

If
$$G \in \mathcal{G}(p)$$
 for some $p \ge 7$, then $i^*(G) \ge \frac{p-6}{p-4}$.

Theorem (Lawrencenko, Plummer, and Zha, 2002)

If $G \in \mathcal{G}(p)$ for some $p \ge 7$, then

$$i^*(G) \ge \frac{(p-6)(p^2-8p+15)}{(p-4)(p^2-8p+13)}.$$

Byung-Geun Oh (Hanyang University, Korea)

Isoperimetric constants on planar graphs

э

Let $\mathcal{G}(p,q)$ be the collection of (infinite) simple planar graphs such that deg $v \ge p$ and deg $f \ge q$. If q = 3, we will use the notation $\mathcal{G}(p,3) = \mathcal{G}(p)$.

Theorem (Dodziuk, 1984)

If $G \in \mathcal{G}(7)$, then $i^*(G) \geq \frac{1}{26}$.

Theorem (Mohar, 1992)

If
$$G \in \mathcal{G}(p)$$
 for some $p \ge 7$, then $i^*(G) \ge \frac{p-6}{p-4}$.

Theorem (Lawrencenko, Plummer, and Zha, 2002)

If $G \in \mathcal{G}(p)$ for some $p \ge 7$, then

$$i^*(G) \ge \frac{(p-6)(p^2-8p+15)}{(p-4)(p^2-8p+13)}.$$

э

Let $\mathcal{G}(p,q)$ be the collection of (infinite) simple planar graphs such that deg $v \ge p$ and deg $f \ge q$. If q = 3, we will use the notation $\mathcal{G}(p,3) = \mathcal{G}(p)$.

Theorem (Dodziuk, 1984)

If $G \in \mathcal{G}(7)$, then $i^*(G) \geq \frac{1}{26}$.

Theorem (Mohar, 1992)

If
$$G \in \mathcal{G}(p)$$
 for some $p \ge 7$, then $i^*(G) \ge \frac{p-6}{p-4}$.

Theorem (Lawrencenko, Plummer, and Zha, 2002)

If $G \in \mathcal{G}(p)$ for some $p \ge 7$, then

$$i^*(G) \geq rac{(
ho-6)(
ho^2-8
ho+15)}{(
ho-4)(
ho^2-8
ho+13)}.$$

(a)

э

Conjecture (Lawrencenko, Plummer, and Zha, 2002)

If
$$G \in \mathcal{G}(p)$$
 for some $p \geq 7$, then $\imath^*(G) \geq \sqrt{\frac{p-6}{p-2}}$.

They also implicitly conjectured that if $G \in \mathcal{G}(p,q)$ for some p,q satisfying $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$, then

$$u^*(G) \ge (q-2)\sqrt{1-rac{4}{(p-2)(q-2)}}$$

This is a very natural conjecture, since if $G \in \mathcal{G}(p,q)$, then it is negatively curved more than the (p,q)-regular graph, hence the isoperimetric constants of G would be greater than or equal to those of the (p,q)-regular graph.

Conjecture (Lawrencenko, Plummer, and Zha, 2002)

If
$$G \in \mathcal{G}(p)$$
 for some $p \ge 7$, then $i^*(G) \ge \sqrt{\frac{p-6}{p-2}}$.

They also implicitly conjectured that if $G \in \mathcal{G}(p,q)$ for some p,q satisfying $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$, then

$$i^*(G) \ge (q-2)\sqrt{1-rac{4}{(p-2)(q-2)}}$$

This is a very natural conjecture, since if $G \in \mathcal{G}(p,q)$, then it is negatively curved more than the (p,q)-regular graph, hence the isoperimetric constants of G would be greater than or equal to those of the (p,q)-regular graph.

(1)

Conjecture (Lawrencenko, Plummer, and Zha, 2002)

If
$$G \in \mathcal{G}(p)$$
 for some $p \geq 7$, then $i^*(G) \geq \sqrt{\frac{p-6}{p-2}}$.

They also implicitly conjectured that if $G \in \mathcal{G}(p,q)$ for some p,q satisfying $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$, then

$$i^*(G) \ge (q-2)\sqrt{1-rac{4}{(p-2)(q-2)}}$$

This is a very natural conjecture, since if $G \in \mathcal{G}(p,q)$, then it is negatively curved more than the (p,q)-regular graph, hence the isoperimetric constants of G would be greater than or equal to those of the (p,q)-regular graph.

イロト イポト イヨト イヨト

Theorem (O., in preparation)

If $G \in \mathcal{G}(p,q)$ for some p,q satisfying $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$, then

1.
$$\iota_{p}(G) \geq \frac{p-2}{p} \sqrt{1 - \frac{4}{(p-2)(q-2)}}$$
,
2. $\iota(G) \geq (p-2) \sqrt{1 - \frac{4}{(p-2)(q-2)}}$,
3. $\iota^{*}(G) \geq (q-2) \sqrt{1 - \frac{4}{(p-2)(q-2)}}$, etc.

The above constants are sharp because they are the corresponding isoperimetric constants of the (p, q)-regular graph.

Also note that the above theorem fully resolves the conjecture of Lawrencenko, Plummer, and Zha.

Byung-Geun Oh (Hanyang University, Korea)

Isoperimetric constants on planar graphs

Theorem (O., in preparation)

If $G \in \mathcal{G}(p,q)$ for some p,q satisfying $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$, then

1.
$$\iota_{p}(G) \geq \frac{p-2}{p} \sqrt{1 - \frac{4}{(p-2)(q-2)}}$$
,
2. $\iota(G) \geq (p-2) \sqrt{1 - \frac{4}{(p-2)(q-2)}}$,
3. $\iota^{*}(G) \geq (q-2) \sqrt{1 - \frac{4}{(p-2)(q-2)}}$, etc.

The above constants are sharp because they are the corresponding isoperimetric constants of the (p, q)-regular graph.

Also note that the above theorem fully resolves the conjecture of Lawrencenko, Plummer, and Zha.

Byung-Geun Oh (Hanyang University, Korea)

Isoperimetric constants on planar graphs

Theorem (O., in preparation)

If $G \in \mathcal{G}(p,q)$ for some p,q satisfying $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$, then

1.
$$\imath_{p}(G) \geq \frac{p-2}{p} \sqrt{1 - \frac{4}{(p-2)(q-2)}}$$
,
2. $\imath(G) \geq (p-2) \sqrt{1 - \frac{4}{(p-2)(q-2)}}$,
3. $\imath^{*}(G) \geq (q-2) \sqrt{1 - \frac{4}{(p-2)(q-2)}}$, etc.

The above constants are sharp because they are the corresponding isoperimetric constants of the (p, q)-regular graph.

Also note that the above theorem fully resolves the conjecture of Lawrencenko, Plummer, and Zha.

The main lemma for the proof is the following.

Lemma (Main Lemma)

Suppose S is a finite subgraph of G and let S° be the induced graph with $V(S^{\circ}) = V(S) \setminus V(bd(S))$. Then

 $|V(bd(S))| \ge |V(bd(S^{\circ}))| + (pq - 2p - 2q)|V(S^{\circ})| + 2q$

if $V(S^{\circ}) \setminus V(bd(S^{\circ})) \neq \emptyset$, and

 $|V(bd(S))| \ge |V(bd(S^{\circ}))| + (pq - 2p - 2q)|V(S^{\circ})| + 2q - 1$

if $V(S^{\circ}) \setminus V(bd(S^{\circ})) = \emptyset$.

The main lemma for the proof is the following.

```
Lemma (Main Lemma)
```

Suppose S is a finite subgraph of G and let S° be the induced graph with $V(S^{\circ}) = V(S) \setminus V(bd(S))$. Then

 $|V(bd(S))| \geq |V(bd(S^\circ))| + (pq-2p-2q)|V(S^\circ)| + 2q$

if $V(S^{\circ}) \setminus V(bd(S^{\circ})) \neq \emptyset$, and

 $|V(bd(S))| \geq |V(bd(S^\circ))| + (pq-2p-2q)|V(S^\circ)| + 2q-1$

if $V(S^{\circ}) \setminus V(bd(S^{\circ})) = \emptyset$.

Using the main lemma repeatedly, one can associate S with a sequence a_n such that $a_0 \ge 1$, $a_k = |V(bd(S))|$ for some $k \in \mathbb{N}$, and $a_n \ge a_{n-1} + (pq - 2p - 2q)(a_0 + a_1 + \cdots + a_{n-1}) + 2q$ for every $n \ge 2$, etc.

Then by studying the sequence a_n carefully, it is possible to obtain the sharp lower bounds for isoperimetric constants.

The main tools for the main lemma are some versions of Combinatorial Gauss-Bonnet Theorem.

Suppose *S* is a finite subgraph of *G*. Then one walks along bd (*S*) from the outside and get the total *left turns* (exterior curvatures), which we denote by $\tau_o(bd(S))$. Note that this is the total left turns occurred on the boundary of the ϵ -neighborhood of $D(S) := \sum_{f \in F(S)} \overline{f}$. Similarly let $\tau_i(bd(S))$ be the total left turns (interior curvatures) obtained when one walks along bd (*S*) from the inside.

Byung-Geun Oh (Hanyang University, Korea)

Isoperimetric constants on planar graphs

Using the main lemma repeatedly, one can associate S with a sequence a_n such that $a_0 \ge 1$, $a_k = |V(bd(S))|$ for some $k \in \mathbb{N}$, and $a_n \ge a_{n-1} + (pq - 2p - 2q)(a_0 + a_1 + \cdots + a_{n-1}) + 2q$ for every $n \ge 2$, etc.

Then by studying the sequence a_n carefully, it is possible to obtain the sharp lower bounds for isoperimetric constants.

The main tools for the main lemma are some versions of Combinatorial Gauss-Bonnet Theorem.

Suppose *S* is a finite subgraph of *G*. Then one walks along bd (*S*) from the outside and get the total *left turns* (exterior curvatures), which we denote by $\tau_o(bd(S))$. Note that this is the total left turns occurred on the boundary of the ϵ -neighborhood of $D(S) := \sum_{f \in F(S)} \overline{f}$. Similarly let $\tau_i(bd(S))$ be the total left turns (interior curvatures) obtained when one walks along bd (*S*) from the inside.

Byung-Geun Oh (Hanyang University, Korea)

Using the main lemma repeatedly, one can associate S with a sequence a_n such that $a_0 \ge 1$, $a_k = |V(bd(S))|$ for some $k \in \mathbb{N}$, and $a_n \ge a_{n-1} + (pq - 2p - 2q)(a_0 + a_1 + \cdots + a_{n-1}) + 2q$ for every $n \ge 2$, etc.

Then by studying the sequence a_n carefully, it is possible to obtain the sharp lower bounds for isoperimetric constants.

The main tools for the main lemma are some versions of Combinatorial Gauss-Bonnet Theorem.

Suppose *S* is a finite subgraph of *G*. Then one walks along bd (*S*) from the outside and get the total left turns (exterior curvatures), which we denote by $\tau_o(bd(S))$. Note that this is the total left turns occurred on the boundary of the ϵ -neighborhood of $D(S) := \sum_{f \in F(S)} \overline{f}$. Similarly let $\tau_i(bd(S))$ be the total left turns (interior curvatures) obtained when one walks along bd (*S*) from the inside.

Byung-Geun Oh (Hanyang University, Korea)

Using the main lemma repeatedly, one can associate S with a sequence a_n such that $a_0 \ge 1$, $a_k = |V(bd(S))|$ for some $k \in \mathbb{N}$, and $a_n \ge a_{n-1} + (pq - 2p - 2q)(a_0 + a_1 + \cdots + a_{n-1}) + 2q$ for every $n \ge 2$, etc.

Then by studying the sequence a_n carefully, it is possible to obtain the sharp lower bounds for isoperimetric constants.

The main tools for the main lemma are some versions of Combinatorial Gauss-Bonnet Theorem.

Suppose *S* is a finite subgraph of *G*. Then one walks along bd (*S*) from the outside and get the total *left turns* (exterior curvatures), which we denote by $\tau_o(bd(S))$. Note that this is the total left turns occurred on the boundary of the ϵ -neighborhood of $D(S) := \sum_{f \in F(S)} \overline{f}$. Similarly let $\tau_i(bd(S))$ be the total left turns (interior curvatures) obtained when one walks along bd (*S*) from the inside.

For $v \in bd(S)$, let cn(v) be the number of components of the ϵ -neighborhood of v minus D(S), and set $C = \sum_{v \in bd(S)} (cn(v) - 1)$.

Theorem (Combinatorial Gauss-Bonnet Theorem involving turns on the boundary) Suppose S is a finite subgraph of G. Then (1) $\phi(S) = \chi(S) + \tau_o(bd(S))$ (2) $\phi(S^\circ) + \tau_i(bd(S)) = \chi(S) + C$.

By using (1) applied to S° , one can get a lower bound of the number of edges from S° to bd (S), and then by using (2) one can obtain a lower bound of the number of vertices on bd (S), which gives a proof for the main lemma.

・ロト ・四ト ・ヨト ・ヨト

For $v \in bd(S)$, let cn(v) be the number of components of the ϵ -neighborhood of v minus D(S), and set $C = \sum_{v \in bd(S)} (cn(v) - 1)$.

Theorem (Combinatorial Gauss-Bonnet Theorem involving turns on the boundary)

Suppose S is a finite subgraph of G. Then (1) $\phi(S) = \chi(S) + \tau_o(bd(S))$

(2) $\phi(S^{\circ}) + \tau_i(bd(S)) = \chi(S) + C.$

By using (1) applied to S° , one can get a lower bound of the number of edges from S° to bd (S), and then by using (2) one can obtain a lower bound of the number of vertices on bd (S), which gives a proof for the main lemma.

イロト イポト イヨト イヨト

For $v \in bd(S)$, let cn(v) be the number of components of the ϵ -neighborhood of v minus D(S), and set $C = \sum_{v \in bd(S)} (cn(v) - 1)$.

Theorem (Combinatorial Gauss-Bonnet Theorem involving turns on the boundary)

Suppose S is a finite subgraph of G. Then

(1)
$$\phi(S) = \chi(S) + \tau_o(bd(S))$$

(2) $\phi(S^{\circ}) + \tau_i(bd(S)) = \chi(S) + C.$

By using (1) applied to S° , one can get a lower bound of the number of edges from S° to bd(S), and then by using (2) one can obtain a lower bound of the number of vertices on bd(S), which gives a proof for the main lemma.

イロト イポト イヨト イヨト

Thank You !!!

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs