Gradient flows and entropy inequalities for dissipative quantum systems

Jan Maas (IST Austria)
joint work with Eric Carlen

Analysis and Geometry on Graphs and Manifolds
Potsdam, 2 August 2017
erc

Starting point:
Diffusion equations via optimal transport

Diffusion equations via optimal transport
Jordan-Kinderlehrer-Otto '98: Beautiful connection between

- the 2-Kantorovich metric on the space of probability measures

$$
W_{2}(\mu, \nu)=\inf _{\gamma \in \Pi(\mu, \nu)} \sqrt{\int_{\mathbf{R}^{n} \times \mathbf{R}^{n}}|x-y|^{2} \mathrm{~d} \gamma(x, y)}
$$

Diffusion equations via optimal transport

Jordan-Kinderlehrer-Otto '98: Beautiful connection between

- the 2-Kantorovich metric on the space of probability measures

$$
W_{2}(\mu, \nu)=\inf _{\gamma \in \Pi(\mu, \nu)} \sqrt{\int_{\mathbf{R}^{n} \times \mathbf{R}^{n}}|x-y|^{2} \mathrm{~d} \gamma(x, y)}
$$

- the Boltzmann-Shannon entropy

$$
\operatorname{Ent}(\mu)=\int_{\mathbf{R}^{n}} \rho(x) \log \rho(x) \mathrm{d} x, \quad \text { if } \quad \mathrm{d} \mu(x)=\rho(x) \mathrm{d} x
$$

Diffusion equations via optimal transport

Jordan-Kinderlehrer-Otto '98: Beautiful connection between

- the 2-Kantorovich metric on the space of probability measures

$$
W_{2}(\mu, \nu)=\inf _{\gamma \in \Pi(\mu, \nu)} \sqrt{\int_{\mathbf{R}^{n} \times \mathbf{R}^{n}}|x-y|^{2} \mathrm{~d} \gamma(x, y)}
$$

- the Boltzmann-Shannon entropy

$$
\operatorname{Ent}(\mu)=\int_{\mathbf{R}^{n}} \rho(x) \log \rho(x) \mathrm{d} x, \quad \text { if } \quad \mathrm{d} \mu(x)=\rho(x) \mathrm{d} x
$$

- the heat equation

$$
\partial_{t} \mu=\Delta \mu
$$

Diffusion equations via optimal transport

Jordan-Kinderlehrer-Otto '98: Beautiful connection between

- the 2-Kantorovich metric on the space of probability measures

$$
W_{2}(\mu, \nu)=\inf _{\gamma \in \Pi(\mu, \nu)} \sqrt{\int_{\mathbf{R}^{n} \times \mathbf{R}^{n}}|x-y|^{2} \mathrm{~d} \gamma(x, y)}
$$

- the Boltzmann-Shannon entropy

$$
\operatorname{Ent}(\mu)=\int_{\mathbf{R}^{n}} \rho(x) \log \rho(x) \mathrm{d} x, \quad \text { if } \quad \mathrm{d} \mu(x)=\rho(x) \mathrm{d} x
$$

- the heat equation

$$
\partial_{t} \mu=\Delta \mu
$$

Theorem (J-K-O '98)

The heat flow is the gradient flow of the entropy w.r.t W_{2}.

Diffusion equations via optimal transport

Theorem (Jordan-Kinderlehrer-Otto '98)
The heat flow is the gradient flow of the entropy w.r.t W_{2}

Diffusion equations via optimal transport

Theorem (Jordan-Kinderlehrer-Otto '98)
The heat flow is the gradient flow of the entropy w.r.t W_{2}

How to make sense of gradient flows in metric spaces?

Diffusion equations via optimal transport

Theorem (Jordan-Kinderlehrer-Otto '98)

The heat flow is the gradient flow of the entropy w.r.t W_{2}

How to make sense of gradient flows in metric spaces?

Gradient flows in \mathbf{R}^{n}
Let $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ smooth and convex. For $u: \mathbf{R}_{+} \rightarrow \mathbf{R}^{n}$ TFAE:

1. u solves the gradient flow equation $u^{\prime}(t)=-\nabla \varphi(u(t))$.

Diffusion equations via optimal transport

Theorem (Jordan-Kinderlehrer-Otto '98)

The heat flow is the gradient flow of the entropy w.r.t W_{2}

How to make sense of gradient flows in metric spaces?

Gradient flows in \mathbf{R}^{n}
Let $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ smooth and convex. For $u: \mathbf{R}_{+} \rightarrow \mathbf{R}^{n}$ TFAE:

1. u solves the gradient flow equation $u^{\prime}(t)=-\nabla \varphi(u(t))$.
2. u solves the evolution variational inequality

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u(t)-y|^{2} \leq \varphi(y)-\varphi(u(t)) \quad \forall y .
$$

(De Giorgi '93, Ambrosio-Gigli-Savaré '05)

Diffusion equations via optimal transport

Theorem (Jordan-Kinderlehrer-Otto '98)

The heat flow is the gradient flow of the entropy w.r.t W_{2}, i.e.,
$\partial_{t} \mu=\Delta \mu \quad \Longleftrightarrow \quad \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} W_{2}\left(\mu_{t}, \nu\right)^{2} \leq \operatorname{Ent}(\nu)-\operatorname{Ent}\left(\mu_{t}\right) \quad \forall \nu$.

How to make sense of gradient flows in metric spaces?

Gradient flows in \mathbf{R}^{n}
Let $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ smooth and convex. For $u: \mathbf{R}_{+} \rightarrow \mathbf{R}^{n}$ TFAE:

1. u solves the gradient flow equation $u^{\prime}(t)=-\nabla \varphi(u(t))$.
2. u solves the evolution variational inequality

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}|u(t)-y|^{2} \leq \varphi(y)-\varphi(u(t)) \quad \forall y .
$$

(De Giorgi '93, Ambrosio-Gigli-Savaré '05)

Diffusion equations via optimal transport

Advantages: The optimal transport approach to diffusion equations

- applies to a large class of equations (Fokker Planck, porous medium, McKean-Vlasov equations, ...)

Diffusion equations via optimal transport

Advantages: The optimal transport approach to diffusion equations

- applies to a large class of equations (Fokker Planck, porous medium, McKean-Vlasov equations, ...)
- is physically appealing

Diffusion equations via optimal transport

Advantages: The optimal transport approach to diffusion equations

- applies to a large class of equations (Fokker Planck, porous medium, McKean-Vlasov equations, ...)
- is physically appealing
- yields functional inequalities and equilibration rates

Diffusion equations via optimal transport

Advantages: The optimal transport approach to diffusion equations

- applies to a large class of equations (Fokker Planck, porous medium, McKean-Vlasov equations, ...)
- is physically appealing
- yields functional inequalities and equilibration rates
- applies to non-smooth problems

Diffusion equations via optimal transport

Advantages: The optimal transport approach to diffusion equations

- applies to a large class of equations (Fokker Planck, porous medium, McKean-Vlasov equations, ...)
- is physically appealing
- yields functional inequalities and equilibration rates
- applies to non-smooth problems
- leads to the synthetic notion of Ricci curvature:
(Lott-Sturm-Villani theory in metric measure spaces)

What about discrete spaces?

What about discrete spaces?

Example: 2-point space $\mathcal{X}=\{0,1\}$.

What about discrete spaces?

Example: 2-point space $\mathcal{X}=\{0,1\}$.

- Set $\mu_{\alpha}:=(1-\alpha) \delta_{0}+\alpha \delta_{1}$ for $\alpha \in[0,1]$.

What about discrete spaces?

Example: 2-point space $\mathcal{X}=\{0,1\}$.

- Set $\mu_{\alpha}:=(1-\alpha) \delta_{0}+\alpha \delta_{1}$ for $\alpha \in[0,1]$. Then:

$$
W_{2}\left(\mu_{\alpha}, \mu_{\beta}\right)=\sqrt{|\alpha-\beta|} .
$$

What about discrete spaces?

Example: 2-point space $\mathcal{X}=\{0,1\}$.

- Set $\mu_{\alpha}:=(1-\alpha) \delta_{0}+\alpha \delta_{1}$ for $\alpha \in[0,1]$. Then:

$$
W_{2}\left(\mu_{\alpha}, \mu_{\beta}\right)=\sqrt{|\alpha-\beta|} .
$$

- Suppose that $\left(\mu_{\alpha(t)}\right)$ is a constant speed geodesic.

What about discrete spaces?

Example: 2-point space $\mathcal{X}=\{0,1\}$.

- Set $\mu_{\alpha}:=(1-\alpha) \delta_{0}+\alpha \delta_{1}$ for $\alpha \in[0,1]$. Then:

$$
W_{2}\left(\mu_{\alpha}, \mu_{\beta}\right)=\sqrt{|\alpha-\beta|} .
$$

- Suppose that $\left(\mu_{\alpha(t)}\right)$ is a constant speed geodesic. Then:

$$
W_{2}\left(\mu_{\alpha(t)}, \mu_{\alpha(s)}\right)=c|t-s|,
$$

What about discrete spaces?

Example: 2-point space $\mathcal{X}=\{0,1\}$.

- Set $\mu_{\alpha}:=(1-\alpha) \delta_{0}+\alpha \delta_{1}$ for $\alpha \in[0,1]$. Then:

$$
W_{2}\left(\mu_{\alpha}, \mu_{\beta}\right)=\sqrt{|\alpha-\beta|} .
$$

- Suppose that $\left(\mu_{\alpha(t)}\right)$ is a constant speed geodesic. Then:

$$
\sqrt{|\alpha(t)-\alpha(s)|}=W_{2}\left(\mu_{\alpha(t)}, \mu_{\alpha(s)}\right)=c|t-s|
$$

What about discrete spaces?

Example: 2-point space $\mathcal{X}=\{0,1\}$.

- Set $\mu_{\alpha}:=(1-\alpha) \delta_{0}+\alpha \delta_{1}$ for $\alpha \in[0,1]$. Then:

$$
W_{2}\left(\mu_{\alpha}, \mu_{\beta}\right)=\sqrt{|\alpha-\beta|} .
$$

- Suppose that $\left(\mu_{\alpha(t)}\right)$ is a constant speed geodesic. Then:

$$
\sqrt{|\alpha(t)-\alpha(s)|}=W_{2}\left(\mu_{\alpha(t)}, \mu_{\alpha(s)}\right)=c|t-s|
$$

Thus: $t \mapsto \alpha(t)$ is 2-Hölder, hence constant.

What about discrete spaces?

Example: 2-point space $\mathcal{X}=\{0,1\}$.

- Set $\mu_{\alpha}:=(1-\alpha) \delta_{0}+\alpha \delta_{1}$ for $\alpha \in[0,1]$. Then:

$$
W_{2}\left(\mu_{\alpha}, \mu_{\beta}\right)=\sqrt{|\alpha-\beta|} .
$$

- Suppose that $\left(\mu_{\alpha(t)}\right)$ is a constant speed geodesic. Then:

$$
\sqrt{|\alpha(t)-\alpha(s)|}=W_{2}\left(\mu_{\alpha(t)}, \mu_{\alpha(s)}\right)=c|t-s|
$$

Thus: $t \mapsto \alpha(t)$ is 2-Hölder, hence constant.

- Conclusion: there are no non-trivial W_{2}-geodesics. In fact:

What about discrete spaces?

Example: 2-point space $\mathcal{X}=\{0,1\}$.

- Set $\mu_{\alpha}:=(1-\alpha) \delta_{0}+\alpha \delta_{1}$ for $\alpha \in[0,1]$. Then:

$$
W_{2}\left(\mu_{\alpha}, \mu_{\beta}\right)=\sqrt{|\alpha-\beta|} .
$$

- Suppose that $\left(\mu_{\alpha(t)}\right)$ is a constant speed geodesic. Then:

$$
\sqrt{|\alpha(t)-\alpha(s)|}=W_{2}\left(\mu_{\alpha(t)}, \mu_{\alpha(s)}\right)=c|t-s|
$$

Thus: $t \mapsto \alpha(t)$ is 2-Hölder, hence constant.

- Conclusion: there are no non-trivial W_{2}-geodesics. In fact:
$\left(\mathcal{P}(\mathcal{X}), W_{2}\right)$ is a geodesic space $\Leftrightarrow(\mathcal{X}, d)$ is a geodesic space.

What about discrete spaces?

Example: 2-point space $\mathcal{X}=\{0,1\}$.

- Set $\mu_{\alpha}:=(1-\alpha) \delta_{0}+\alpha \delta_{1}$ for $\alpha \in[0,1]$. Then:

$$
W_{2}\left(\mu_{\alpha}, \mu_{\beta}\right)=\sqrt{|\alpha-\beta|} .
$$

- Suppose that $\left(\mu_{\alpha(t)}\right)$ is a constant speed geodesic. Then:

$$
\sqrt{|\alpha(t)-\alpha(s)|}=W_{2}\left(\mu_{\alpha(t)}, \mu_{\alpha(s)}\right)=c|t-s|
$$

Thus: $t \mapsto \alpha(t)$ is 2-Hölder, hence constant.

- Conclusion: there are no non-trivial W_{2}-geodesics. In fact:
$\left(\mathcal{P}(\mathcal{X}), W_{2}\right)$ is a geodesic space $\Leftrightarrow(\mathcal{X}, d)$ is a geodesic space.
Moreover: no curves of finite length \rightsquigarrow no gradient flows.

What about discrete spaces?

Example: 2-point space $\mathcal{X}=\{0,1\}$.

- Set $\mu_{\alpha}:=(1-\alpha) \delta_{0}+\alpha \delta_{1}$ for $\alpha \in[0,1]$. Then:

$$
W_{2}\left(\mu_{\alpha}, \mu_{\beta}\right)=\sqrt{|\alpha-\beta|} .
$$

- Suppose that $\left(\mu_{\alpha(t)}\right)$ is a constant speed geodesic. Then:

$$
\sqrt{|\alpha(t)-\alpha(s)|}=W_{2}\left(\mu_{\alpha(t)}, \mu_{\alpha(s)}\right)=c|t-s|
$$

Thus: $t \mapsto \alpha(t)$ is 2-Hölder, hence constant.

- Conclusion: there are no non-trivial W_{2}-geodesics. In fact:
$\left(\mathcal{P}(\mathcal{X}), W_{2}\right)$ is a geodesic space $\Leftrightarrow(\mathcal{X}, d)$ is a geodesic space.
Moreover: no curves of finite length \rightsquigarrow no gradient flows.
Question: Is there a discrete JKO-Theorem?

Discrete setting

Setting

- \mathcal{X} : finite set
- $Q(x, y)$: transition rate from x to y
- π : reversible measure, $\quad \forall x, y: Q(x, y) \pi(x)=Q(y, x) \pi(y)$

Discrete setting

Setting

- \mathcal{X} : finite set
- $Q(x, y)$: transition rate from x to y
- π : reversible measure, $\quad \forall x, y: Q(x, y) \pi(x)=Q(y, x) \pi(y)$

Heat flow

- Markov generator: $\mathcal{L} \psi(x):=\sum_{y} Q(x, y)(\psi(y)-\psi(x))$
- Continuous time Markov semigroup: $P_{t}=e^{t \mathcal{L}}$

Discrete setting

Setting

- \mathcal{X} : finite set
- $Q(x, y)$: transition rate from x to y
- π : reversible measure, $\quad \forall x, y: Q(x, y) \pi(x)=Q(y, x) \pi(y)$

Heat flow

- Markov generator: $\mathcal{L} \psi(x):=\sum_{y} Q(x, y)(\psi(y)-\psi(x))$
- Continuous time Markov semigroup: $P_{t}=e^{t \mathcal{L}}$

Relative Entropy

- $\mathcal{P}(\mathcal{X}):=\left\{\rho: \mathcal{X} \rightarrow \mathbf{R}_{+} \mid \sum_{x \in \mathcal{X}} \rho(x) \pi(x)=1\right\}$
- $\operatorname{Ent}(\rho):=\sum_{x \in \mathcal{X}} \rho(x) \log \rho(x) \pi(x), \quad \rho \in \mathcal{P}(\mathcal{X})$.

Discrete heat flow as gradient flow?

Question

Is the discrete heat flow the gradient flow of the entropy w.r.t. W_{2} ?

Discrete heat flow as gradient flow?

Question

Is the discrete heat flow the gradient flow of the entropy w.r.t. W_{2} ?

No! \quad (reason: $\left.W_{2}\left(\mu_{\alpha}, \mu_{\beta}\right)=\sqrt{|\alpha-\beta|}\right)$

Discrete heat flow as gradient flow?

Question

Is the discrete heat flow the gradient flow of the entropy w.r.t. a different metric?

Discrete heat flow as gradient flow?

Question

Is the discrete heat flow the gradient flow of the entropy w.r.t. a different metric?

On the two point space: Yes!

Discrete heat flow as gradient flow?

Question

Is the discrete heat flow the gradient flow of the entropy w.r.t. a different metric?

On the two point space: Yes!

$$
\mathcal{W}\left(\mu_{\alpha}, \mu_{\beta}\right)=\int_{\alpha}^{\beta} \sqrt{\frac{\operatorname{arctanh}(2 r-1)}{2 r-1}} \mathrm{~d} r, \quad 0 \leq \alpha \leq \beta \leq 1
$$

Discrete heat flow as gradient flow?

Question

Is the discrete heat flow the gradient flow of the entropy w.r.t. a different metric?

On the two point space: Yes!

$$
\mathcal{W}\left(\mu_{\alpha}, \mu_{\beta}\right)=\int_{\alpha}^{\beta} \sqrt{\frac{\operatorname{arctanh}(2 r-1)}{2 r-1}} \mathrm{~d} r, \quad 0 \leq \alpha \leq \beta \leq 1
$$

What about the general discrete case?

Back to $\mathbf{R}^{\boldsymbol{n}}$: dynamical characterisation of W_{2}

Back to $\mathbf{R}^{\boldsymbol{n}}$: dynamical characterisation of W_{2}

Back to \mathbf{R}^{n} : dynamical characterisation of W_{2}

Benamou-Brenier formula in \mathbf{R}^{n}

$$
\begin{aligned}
& W_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf _{\rho,, \Psi .}\left\{\int_{0}^{1} \int_{\mathbf{R}^{n}}\left|\Psi_{t}(x)\right|^{2} \rho_{t}(x) \mathrm{d} x \mathrm{~d} t:\right. \\
& \partial_{t} \rho+\nabla \cdot(\rho \Psi)=0 \\
&\left.\left.\rho\right|_{t=0}=\rho_{0},\left.\quad \rho\right|_{t=1}=\rho_{1}\right\} .
\end{aligned}
$$

Back to \mathbf{R}^{n} : dynamical characterisation of W_{2}

Benamou-Brenier formula in \mathbf{R}^{n}
$W_{2}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf _{\rho, \psi \psi}\left\{\int_{0}^{1} \int_{\mathbf{R}^{n}}\left|\nabla \psi_{t}(x)\right|^{2} \rho_{t}(x) \mathrm{d} x \mathrm{~d} t:\right.$

$$
\partial_{t} \rho+\nabla \cdot(\rho \nabla \psi)=0
$$

$$
\left.\left.\rho\right|_{t=0}=\rho_{0},\left.\quad \rho\right|_{t=1}=\rho_{1}\right\} .
$$

Definition of the metric \mathcal{W}

Benamou-Brenier formula in \mathbf{R}^{n}

$$
\begin{aligned}
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)= & \inf _{\rho, \psi}\{
\end{aligned}\left\{\int_{0}^{1} \int_{\mathbf{R}^{n}}\left|\nabla \psi_{t}(x)\right|^{2} \rho_{t}(x) \mathrm{d} x \mathrm{~d} t\right\},
$$

Definition of the metric \mathcal{W}

Benamou-Brenier formula in \mathbf{R}^{n}

$$
\begin{aligned}
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)= & \inf _{\rho, \psi}\{ \\
& \left\{\int_{0}^{1} \int_{\mathbf{R}^{n}}\left|\nabla \psi_{t}(x)\right|^{2} \rho_{t}(x) \mathrm{d} x \mathrm{~d} t\right\} \\
& \text { s.t. } \quad \partial_{t} \rho+\operatorname{div}(\rho \nabla \psi)=0 \text { and } \rho_{t=0}=\rho_{0}, \rho_{t=1}=\rho_{1} .
\end{aligned}
$$

Definition in the discrete case
$\mathcal{W}\left(\rho_{0}, \rho_{1}\right)^{2}$
$:=\inf _{\rho, \psi}\left\{\int_{0}^{1} \sum_{x, y \in \mathcal{X}}\left(\psi_{t}(x)-\psi_{t}(y)\right)^{2}\right.$

$$
Q(x, y) \pi(x) \mathrm{d} t\}
$$

s.t.

Definition of the metric \mathcal{W}

Benamou-Brenier formula in \mathbf{R}^{n}

$$
\begin{aligned}
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)= & \inf _{\rho, \psi}\{
\end{aligned}\left\{\int_{0}^{1} \int_{\mathbf{R}^{n}}\left|\nabla \psi_{t}(x)\right|^{2} \rho_{t}(x) \mathrm{d} x \mathrm{~d} t\right\},
$$

Definition in the discrete case
$\mathcal{W}\left(\rho_{0}, \rho_{1}\right)^{2}$
$:=\inf _{\rho, \psi}\left\{\int_{0}^{1} \sum_{x, y \in \mathcal{X}}\left(\psi_{t}(x)-\psi_{t}(y)\right)^{2} \quad Q(x, y) \pi(x) \mathrm{d} t\right\}$
s.t.

Problem: ρ is defined on vertices, $\nabla \psi$ is defined on edges

Definition of the metric \mathcal{W}

Benamou-Brenier formula in \mathbf{R}^{n}

$$
\begin{aligned}
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)= & \inf _{\rho, \psi}\{ \\
& \left\{\int_{0}^{1} \int_{\mathbf{R}^{n}}\left|\nabla \psi_{t}(x)\right|^{2} \rho_{t}(x) \mathrm{d} x \mathrm{~d} t\right\} \\
& \text { s.t. } \quad \partial_{t} \rho+\operatorname{div}(\rho \nabla \psi)=0 \text { and } \rho_{t=0}=\rho_{0}, \rho_{t=1}=\rho_{1} .
\end{aligned}
$$

Definition in the discrete case

$\mathcal{W}\left(\rho_{0}, \rho_{1}\right)^{2}$
$:=\inf _{\rho, \psi}\left\{\int_{0}^{1} \sum_{x, y \in \mathcal{X}}\left(\psi_{t}(x)-\psi_{t}(y)\right)^{2} \hat{\rho}_{t}(x, y) Q(x, y) \pi(x) \mathrm{d} t\right\}$
s.t.

Use the logarithmic mean as the "density on an edge"!

$$
\hat{\rho}(x, y):=\int_{0}^{1} \rho(x)^{1-\alpha} \rho(y)^{\alpha} \mathrm{d} \alpha
$$

Definition of the metric \mathcal{W}

Benamou-Brenier formula in \mathbf{R}^{n}

$$
\begin{aligned}
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)= & \inf _{\rho, \psi}\{ \\
& \left\{\int_{0}^{1} \int_{\mathbf{R}^{n}}\left|\nabla \psi_{t}(x)\right|^{2} \rho_{t}(x) \mathrm{d} x \mathrm{~d} t\right\} \\
& \text { s.t. } \quad \partial_{t} \rho+\operatorname{div}(\rho \nabla \psi)=0 \text { and } \rho_{t=0}=\rho_{0}, \rho_{t=1}=\rho_{1} .
\end{aligned}
$$

Definition in the discrete case

$\mathcal{W}\left(\rho_{0}, \rho_{1}\right)^{2}$
$:=\inf _{\rho, \psi}\left\{\int_{0}^{1} \sum_{x, y \in \mathcal{X}}\left(\psi_{t}(x)-\psi_{t}(y)\right)^{2} \hat{\rho}_{t}(x, y) Q(x, y) \pi(x) \mathrm{d} t\right\}$
s.t. $\quad \frac{\mathrm{d}}{\mathrm{d} t} \rho_{t}(x)+\sum_{y \in \mathcal{X}} \hat{\rho}_{t}(x, y)\left(\psi_{t}(x)-\psi_{t}(y)\right) Q(x, y)=0 \quad \forall x$

Use the logarithmic mean as the "density on an edge"!

$$
\hat{\rho}(x, y):=\int_{0}^{1} \rho(x)^{1-\alpha} \rho(y)^{\alpha} \mathrm{d} \alpha
$$

Discrete heat flow as gradient flow

- \mathcal{W} defines a (Riemannian) metric on $\mathcal{P}(\mathcal{X})$.

Discrete heat flow as gradient flow

- \mathcal{W} defines a (Riemannian) metric on $\mathcal{P}(\mathcal{X})$.

Discrete JKO-Theorem (M. , Mielke)
The heat flow is the gradient flow of the entropy w.r.t. \mathcal{W}.

Discrete heat flow as gradient flow

- \mathcal{W} defines a (Riemannian) metric on $\mathcal{P}(\mathcal{X})$.

Discrete JKO-Theorem (М. , Mielke)
The heat flow is the gradient flow of the entropy w.r.t. \mathcal{W}.

Why the logarithmic mean?

Discrete heat flow as gradient flow

- \mathcal{W} defines a (Riemannian) metric on $\mathcal{P}(\mathcal{X})$.

Discrete JKO-Theorem (M. , Mielke)

The heat flow is the gradient flow of the entropy w.r.t. \mathcal{W}.
Why the logarithmic mean?

- Represent heat equation as continuity equation:

$$
\partial_{t} \rho=\Delta \rho \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho \Psi)=0 \\
\Psi=-\nabla \log \rho
\end{array}\right.
$$

Discrete heat flow as gradient flow

- \mathcal{W} defines a (Riemannian) metric on $\mathcal{P}(\mathcal{X})$.

Discrete JKO-Theorem (M. , Mielke)

The heat flow is the gradient flow of the entropy w.r.t. \mathcal{W}.

Why the logarithmic mean?

- Represent heat equation as continuity equation:

$$
\partial_{t} \rho=\Delta \rho \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho \Psi)=0 \\
\Psi=-\nabla \log \rho
\end{array}\right.
$$

- Log-mean compensates for the lack of discrete chain rule:

$$
\hat{\rho}(x, y)=\int_{0}^{1} \rho(x)^{1-\alpha} \rho(y)^{\alpha} \mathrm{d} \alpha=\frac{\rho(x)-\rho(y)}{\log \rho(x)-\log \rho(y)}
$$

Starting point for a notion of discrete Ricci curvature (with Erbar)

Is there a JKO theorem for dissipative quantum systems?

Dissipative Quantum mechanics

Dynamics of open quantum systems

Dissipative Quantum mechanics

Dynamics of open quantum systems

- Let \mathfrak{H} be a (finite-dimensional) Hilbert space

Dissipative Quantum mechanics

Dynamics of open quantum systems

- Let \mathfrak{H} be a (finite-dimensional) Hilbert space
- Let $\mathfrak{P}(\mathfrak{H})=\left\{\rho \in B(\mathfrak{H}): \rho=\rho^{*} \geq 0, \operatorname{Tr}[\rho]=1\right\}$ be the set of density matrices

Dissipative Quantum mechanics

Dynamics of open quantum systems

- Let \mathfrak{H} be a (finite-dimensional) Hilbert space
- Let $\mathfrak{P}(\mathfrak{H})=\left\{\rho \in B(\mathfrak{H}): \rho=\rho^{*} \geq 0, \operatorname{Tr}[\rho]=1\right\}$ be the set of density matrices
- Let $\mathcal{P}_{t}^{\dagger}=e^{t \mathcal{L}^{\dagger}}$ be a TPCP semigroup acting on $\mathfrak{P}(\mathfrak{H})$, i.e.,
- $\mathcal{P}_{t}^{\dagger}$ is trace-preserving, i.e., $\operatorname{Tr}\left[\mathcal{P}_{t}^{\dagger} \rho\right]=\operatorname{Tr}[\rho]$ for all $t \geq 0$
- $\mathcal{P}_{t}^{\dagger}$ is completely positive, i.e., $\mathcal{P}_{t}^{\dagger} \otimes I_{\mathcal{M}^{n}}$ preserves positivity $\forall n$

Dissipative Quantum mechanics

Dynamics of open quantum systems

- Let \mathfrak{H} be a (finite-dimensional) Hilbert space
- Let $\mathfrak{P}(\mathfrak{H})=\left\{\rho \in B(\mathfrak{H}): \rho=\rho^{*} \geq 0, \operatorname{Tr}[\rho]=1\right\}$ be the set of density matrices
- Let $\mathcal{P}_{t}^{\dagger}=e^{t \mathcal{L}^{\dagger}}$ be a TPCP semigroup acting on $\mathfrak{P}(\mathfrak{H})$, i.e.,
- $\mathcal{P}_{t}^{\dagger}$ is trace-preserving, i.e., $\operatorname{Tr}\left[\mathcal{P}_{t}^{\dagger} \rho\right]=\operatorname{Tr}[\rho]$ for all $t \geq 0$
- $\mathcal{P}_{t}^{\dagger}$ is completely positive, i.e., $\mathcal{P}_{t}^{\dagger} \otimes I_{\mathcal{M}^{n}}$ preserves positivity $\forall n$
- Then, \mathcal{L}^{\dagger} can be written in Lindblad form

$$
\mathcal{L}^{\dagger} \rho=-i[H, \rho]+\sum_{j}\left[V_{j}, \rho V_{j}^{*}\right]+\left[V_{j} \rho, V_{j}^{*}\right]
$$

where the Hamiltonian H is self-adjoint, and $V_{j} \in B(\mathfrak{H})$.
[Gorini/Kossakowski/Sudarshan, Lindblad 1976]

Monotonicity of the quantum relative entropy

- General form of completely positive trace preserving Markovian dynamics:

$$
\partial_{t} \rho=\mathcal{L}^{\dagger} \rho \quad \text { (Lindblad equation) }
$$

where $\mathcal{L}^{\dagger} \rho=-i[H, \rho]+\sum_{j}\left[V_{j}, \rho V_{j}^{*}\right]+\left[V_{j} \rho, V_{j}^{*}\right]$.

Monotonicity of the quantum relative entropy

- General form of completely positive trace preserving Markovian dynamics:

$$
\partial_{t} \rho=\mathcal{L}^{\dagger} \rho \quad \text { (Lindblad equation) }
$$

where $\mathcal{L}^{\dagger} \rho=-i[H, \rho]+\sum_{j}\left[V_{j}, \rho V_{j}^{*}\right]+\left[V_{j} \rho, V_{j}^{*}\right]$.

- Assume that $\sigma \in \mathfrak{H}$ is a stationary state, i.e., $\mathcal{L}^{\dagger} \sigma=0$.

Monotonicity of the quantum relative entropy

- General form of completely positive trace preserving Markovian dynamics:

$$
\partial_{t} \rho=\mathcal{L}^{\dagger} \rho \quad \text { (Lindblad equation) }
$$

where $\mathcal{L}^{\dagger} \rho=-i[H, \rho]+\sum_{j}\left[V_{j}, \rho V_{j}^{*}\right]+\left[V_{j} \rho, V_{j}^{*}\right]$.

- Assume that $\sigma \in \mathfrak{H}$ is a stationary state, i.e., $\mathcal{L}^{\dagger} \sigma=0$.
- Let $\operatorname{Ent}(\rho \mid \sigma)=\operatorname{Tr}[\rho(\log \rho-\log \sigma)]$ be the quantum relative entropy.

Monotonicity of the quantum relative entropy

- General form of completely positive trace preserving Markovian dynamics:

$$
\partial_{t} \rho=\mathcal{L}^{\dagger} \rho \quad \text { (Lindblad equation) }
$$

where $\mathcal{L}^{\dagger} \rho=-i[H, \rho]+\sum_{j}\left[V_{j}, \rho V_{j}^{*}\right]+\left[V_{j} \rho, V_{j}^{*}\right]$.

- Assume that $\sigma \in \mathfrak{H}$ is a stationary state, i.e., $\mathcal{L}^{\dagger} \sigma=0$.
- Let $\operatorname{Ent}(\rho \mid \sigma)=\operatorname{Tr}[\rho(\log \rho-\log \sigma)]$ be the quantum relative entropy.
- [Spohn ${ }^{178]}$ Along the Lindblad equation, $t \mapsto \operatorname{Ent}\left(\rho_{t} \mid \sigma\right)$ decreases.

Monotonicity of the quantum relative entropy

- General form of completely positive trace preserving Markovian dynamics:

$$
\left.\partial_{t} \rho=\mathcal{L}^{\dagger} \rho \quad \text { (Lindblad equation }\right)
$$

where $\mathcal{L}^{\dagger} \rho=-i[H, \rho]+\sum_{j}\left[V_{j}, \rho V_{j}^{*}\right]+\left[V_{j} \rho, V_{j}^{*}\right]$.

- Assume that $\sigma \in \mathfrak{H}$ is a stationary state, i.e., $\mathcal{L}^{\dagger} \sigma=0$.
- Let $\operatorname{Ent}(\rho \mid \sigma)=\operatorname{Tr}[\rho(\log \rho-\log \sigma)]$ be the quantum relative entropy.
- [Spohn ${ }^{178]}$ Along the Lindblad equation, $t \mapsto \operatorname{Ent}\left(\rho_{t} \mid \sigma\right)$ decreases.

Question

Can we formulate the Lindblad equation $\partial_{t} \rho=\mathcal{L}^{\dagger} \rho$ as gradient flow of the relative entropy?

Example: the quantum Ornstein-Uhlenbeck semigroup

Example: the quantum Ornstein-Uhlenbeck semigroup

- Let a be an operator satisfying $\left[a, a^{*}\right]=I$

Example: the quantum Ornstein-Uhlenbeck semigroup

- Let a be an operator satisfying $\left[a, a^{*}\right]=I$
- Concrete realisation: $\mathfrak{H}=L^{2}(\mathbf{R}, \gamma), \gamma$ Gaussian measure,

$$
a=\partial_{x}, \quad a^{*}=x-\partial_{x}
$$

Example: the quantum Ornstein-Uhlenbeck semigroup

- Let a be an operator satisfying $\left[a, a^{*}\right]=I$
- Concrete realisation: $\mathfrak{H}=L^{2}(\mathbf{R}, \gamma), \gamma$ Gaussian measure,

$$
a=\partial_{x}, \quad a^{*}=x-\partial_{x}
$$

- For $\beta>0$, consider the quantum OU-operator

$$
\mathcal{L}_{\beta}^{\dagger} \rho=\frac{1}{2} e^{\beta / 2}\left(\left[a, \rho a^{*}\right]+\left[a \rho, a^{*}\right]\right)+\frac{1}{2} e^{-\beta / 2}\left(\left[a^{*}, \rho a\right]+\left[a^{*} \rho, a\right]\right)
$$

Example: the quantum Ornstein-Uhlenbeck semigroup

- Let a be an operator satisfying $\left[a, a^{*}\right]=I$
- Concrete realisation: $\mathfrak{H}=L^{2}(\mathbf{R}, \gamma), \gamma$ Gaussian measure,

$$
a=\partial_{x}, \quad a^{*}=x-\partial_{x}
$$

- For $\beta>0$, consider the quantum OU-operator

$$
\mathcal{L}_{\beta}^{\dagger} \rho=\frac{1}{2} e^{\beta / 2}\left(\left[a, \rho a^{*}\right]+\left[a \rho, a^{*}\right]\right)+\frac{1}{2} e^{-\beta / 2}\left(\left[a^{*}, \rho a\right]+\left[a^{*} \rho, a\right]\right)
$$

- \exists ! stationary state: $\sigma_{\beta}=Z^{-1} e^{-\beta H}$, where $H=a^{*} a=\partial_{x}^{2}-x \partial_{x}$ is the classical OU-operator

Conjecture: [Huber/König/Vershynina '16]
$\operatorname{Ent}\left(P_{t}^{\dagger} \rho \mid \sigma_{\beta}\right) \leq e^{-2 \lambda_{\beta} t} \operatorname{Ent}\left(\rho \mid \sigma_{\beta}\right) \quad$ where $\quad \lambda_{\beta}=\sinh (\beta / 2)$.

Quantum detailed balance

Quantum detailed balance

- Let $\left(\mathcal{P}_{t}^{\dagger}\right)$ be a TPCP semigroup on $B(\mathfrak{H})$.

Quantum detailed balance

- Let $\left(\mathcal{P}_{t}^{\dagger}\right)$ be a TPCP semigroup on $B(\mathfrak{H})$.
- Let \mathcal{P}_{t} be its adjoint w.r.t. the scalar product $\langle A, B\rangle=\operatorname{Tr}\left[A^{*} B\right]$ on $B(\mathfrak{H})$.

Quantum detailed balance

- Let $\left(\mathcal{P}_{t}^{\dagger}\right)$ be a TPCP semigroup on $B(\mathfrak{H})$.
- Let \mathcal{P}_{t} be its adjoint w.r.t. the scalar product $\langle A, B\rangle=\operatorname{Tr}\left[A^{*} B\right]$ on $B(\mathfrak{H})$.
- We say that a density operator σ satisfies detailed balance if \mathcal{P}_{t} is self-adjoint w.r.t. $\langle A, B\rangle_{\sigma}:=\operatorname{Tr}\left[\sigma A^{*} B\right]$.

Quantum detailed balance

- Let $\left(\mathcal{P}_{t}^{\dagger}\right)$ be a TPCP semigroup on $B(\mathfrak{H})$.
- Let \mathcal{P}_{t} be its adjoint w.r.t. the scalar product $\langle A, B\rangle=\operatorname{Tr}\left[A^{*} B\right]$ on $B(\mathfrak{H})$.
- We say that a density operator σ satisfies detailed balance if \mathcal{P}_{t} is self-adjoint w.r.t. $\langle A, B\rangle_{\sigma}:=\operatorname{Tr}\left[\sigma A^{*} B\right]$.

Structure of Lindblad operators with detailed balance [Alicki ${ }^{\prime} 76$] If σ satisfies detailed balance for $\left(\mathcal{P}_{t}\right)$, then

$$
\mathcal{L}^{\dagger}=\sum_{j} e^{\omega_{j} / 2} \mathcal{L}_{j}^{\dagger}, \quad \mathcal{L}_{j}^{\dagger} \rho=\left[V_{j}, \rho V_{j}^{*}\right]+\left[V_{j} \rho, V_{j}^{*}\right]
$$

where $\left\{V_{j}\right\}_{j}=\left\{V_{j}^{*}\right\}_{j}$ and $\left[V_{j}, \log \sigma\right]=-\omega_{j} V_{j}$ for some $\omega_{j} \in \mathbf{R}$

Gradient flow structures

Gradient flow structures

- Can we formulate the Lindblad equation $\partial_{t} \rho=\mathcal{L}^{\dagger} \rho$ as gradient flow of the relative entropy?

Gradient flow structures

- Can we formulate the Lindblad equation $\partial_{t} \rho=\mathcal{L}^{\dagger} \rho$ as gradient flow of the relative entropy?
- Assume first: $\sigma=I$. Then: $\mathcal{L}=\mathcal{L}^{\dagger}$.

Gradient flow structures

- Can we formulate the Lindblad equation $\partial_{t} \rho=\mathcal{L}^{\dagger} \rho$ as gradient flow of the relative entropy?
- Assume first: $\sigma=I$. Then: $\mathcal{L}=\mathcal{L}^{\dagger}$.
- Write $\partial_{j} A=\left[V_{j}, A\right]$. Then \mathcal{L} has the div-form representation

$$
\mathcal{L} A=-\sum_{j} \partial_{j}^{\dagger} \partial_{j} A
$$

Gradient flow structures

- Can we formulate the Lindblad equation $\partial_{t} \rho=\mathcal{L}^{\dagger} \rho$ as gradient flow of the relative entropy?
- Assume first: $\sigma=I$. Then: $\mathcal{L}=\mathcal{L}^{\dagger}$.
- Write $\partial_{j} A=\left[V_{j}, A\right]$. Then \mathcal{L} has the div-form representation

$$
\mathcal{L} A=-\sum_{j} \partial_{j}^{\dagger} \partial_{j} A
$$

- Ansatz: define a distance \mathcal{W} on $\mathfrak{P}(\mathfrak{H})$ by

$$
\begin{array}{ll}
\mathcal{W}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf _{\rho, A}\left\{\int_{0}^{1} \sum_{j} \operatorname{Tr}\left[\left(\partial_{j} A\right)^{*} \rho \bullet \partial_{j} A\right] \mathrm{d} t\right\} \\
\text { s.t. } & \partial_{t} \rho+\sum_{j} \partial_{j}^{\dagger}\left(\rho \bullet \partial_{j} A\right)=0, \quad \rho: \rho_{0} \rightsquigarrow \rho_{1}
\end{array}
$$

Gradient flow structures

- Can we formulate the Lindblad equation $\partial_{t} \rho=\mathcal{L}^{\dagger} \rho$ as gradient flow of the relative entropy?
- Assume first: $\sigma=I$. Then: $\mathcal{L}=\mathcal{L}^{\dagger}$.
- Write $\partial_{j} A=\left[V_{j}, A\right]$. Then \mathcal{L} has the div-form representation

$$
\mathcal{L} A=-\sum_{j} \partial_{j}^{\dagger} \partial_{j} A
$$

- Ansatz: define a distance \mathcal{W} on $\mathfrak{P}(\mathfrak{H})$ by

$$
\begin{array}{ll}
\mathcal{W}\left(\rho_{0}, \rho_{1}\right)^{2}=\inf _{\rho, A}\left\{\int_{0}^{1} \sum_{j} \operatorname{Tr}\left[\left(\partial_{j} A\right)^{*} \rho \bullet \partial_{j} A\right] \mathrm{d} t\right\} \\
\text { s.t. } & \partial_{t} \rho+\sum_{j} \partial_{j}^{\dagger}\left(\rho \bullet \partial_{j} A\right)=0, \quad \rho: \rho_{0} \rightsquigarrow \rho_{1} .
\end{array}
$$

- How to define the product - ?

Need: non-commutative version of the classical chain rule

$$
\nabla \rho=\rho \nabla \log \rho ?
$$

A non-commutative chain rule

Is there a non-commutative chain rule " $\partial_{j} \rho=\rho \bullet \partial_{j} \log \rho$ "?

A non-commutative chain rule

Is there a non-commutative chain rule " $\partial_{j} \rho=\rho \bullet \partial_{j} \log \rho$ "?

- Recall that $\partial_{j} A=\left[V_{j}, A\right]$

A non-commutative chain rule

Is there a non-commutative chain rule " $\partial_{j} \rho=\rho \bullet \partial_{j} \log \rho$ "?

- Recall that $\partial_{j} A=\left[V_{j}, A\right]$
- Observe: $\partial_{j}(A B)=\left(\partial_{j} A\right) B+A \partial_{j} B$

A non-commutative chain rule

Is there a non-commutative chain rule " $\partial_{j} \rho=\rho \bullet \partial_{j} \log \rho$ "?

- Recall that $\partial_{j} A=\left[V_{j}, A\right]$
- Observe: $\partial_{j}(A B)=\left(\partial_{j} A\right) B+A \partial_{j} B$
- Consequently:

$$
\partial_{j}\left(A^{n}\right)=\sum_{k=0}^{n-1} A^{k}\left(\partial_{j} A\right) A^{n-k-1}
$$

A non-commutative chain rule

Is there a non-commutative chain rule " $\partial_{j} \rho=\rho \bullet \partial_{j} \log \rho$ "?

- Recall that $\partial_{j} A=\left[V_{j}, A\right]$
- Observe: $\partial_{j}(A B)=\left(\partial_{j} A\right) B+A \partial_{j} B$
- Consequently:

$$
\partial_{j}\left(A^{n}\right)=\sum_{k=0}^{n-1} A^{k}\left(\partial_{j} A\right) A^{n-k-1}
$$

- Set $\rho=A^{1 / n}$. Then:

$$
\partial_{j} \rho=\sum_{k=0}^{n-1} \rho^{k / n}\left(\partial_{j} \rho^{1 / n}\right) \rho^{1-(k+1) / n}
$$

A non-commutative chain rule

Is there a non-commutative chain rule " $\partial_{j} \rho=\rho \bullet \partial_{j} \log \rho^{\prime \prime}$?

- Recall that $\partial_{j} A=\left[V_{j}, A\right]$
- Observe: $\partial_{j}(A B)=\left(\partial_{j} A\right) B+A \partial_{j} B$
- Consequently:

$$
\partial_{j}\left(A^{n}\right)=\sum_{k=0}^{n-1} A^{k}\left(\partial_{j} A\right) A^{n-k-1}
$$

- Set $\rho=A^{1 / n}$. Then:

$$
\partial_{j} \rho=\sum_{k=0}^{n-1} \rho^{k / n}\left(\partial_{j} \rho^{1 / n}\right) \rho^{1-(k+1) / n}
$$

$$
n \rightarrow \infty: \quad \partial_{j} \rho=\int_{0}^{1} \rho^{s}\left(\partial_{j} \log \rho\right) \rho^{1-s} \mathrm{~d} s
$$

Quantum JKO

Quantum JKO-Theorem I (Carlen-M. , Mielke 2014)

Let the TPCP semigroup $\mathcal{P}_{t}^{\dagger}=e^{t \mathcal{L}^{\dagger}}$ satisfy det. balance w.r.t. I. Then, the Lindblad equation $\partial_{t} \rho=\mathcal{L}^{\dagger} \rho$ is the gradient flow equation for the von Neumann entropy $\operatorname{Ent}(\rho)=\operatorname{Tr}[\rho \log \rho]$ w.r.t \mathcal{W}.

Quantum JKO

Quantum JKO-Theorem I (Carlen-M. , Mielke 2014)

Let the TPCP semigroup $\mathcal{P}_{t}^{\dagger}=e^{t \mathcal{L}^{\dagger}}$ satisfy det. balance w.r.t. I. Then, the Lindblad equation $\partial_{t} \rho=\mathcal{L}^{\dagger} \rho$ is the gradient flow equation for the von Neumann entropy $\operatorname{Ent}(\rho)=\operatorname{Tr}[\rho \log \rho]$ w.r.t \mathcal{W}.
\mathcal{W} is defined by the non-commutative Benamou-Brenier formula:

$$
\begin{aligned}
\mathcal{W}^{2}\left(\rho_{0}, \rho_{1}\right)=\inf _{\rho, A} & \left\{\int_{0}^{1} \sum_{j} \operatorname{Tr}\left[\left(\partial_{j} A\right)^{*} \rho \bullet \partial_{j} A\right] \mathrm{d} t:\right. \\
& \left.\partial_{t} \rho+\sum_{j} \partial_{j}^{\dagger}\left(\rho \bullet \partial_{j} A\right)=0, \quad \rho: \rho_{0} \rightsquigarrow \rho_{1}\right\}
\end{aligned}
$$

where $\rho \bullet B:=\int_{0}^{1} \rho^{s} B \rho^{1-s} \mathrm{~d} s$.

Quantum JKO

Quantum JKO-Theorem I (Carlen-M. , Mielke 2014)

Let the TPCP semigroup $\mathcal{P}_{t}^{\dagger}=e^{t \mathcal{L}^{\dagger}}$ satisfy det. balance w.r.t. I. Then, the Lindblad equation $\partial_{t} \rho=\mathcal{L}^{\dagger} \rho$ is the gradient flow equation for the von Neumann entropy $\operatorname{Ent}(\rho)=\operatorname{Tr}[\rho \log \rho]$ w.r.t \mathcal{W}.
\mathcal{W} is defined by the non-commutative Benamou-Brenier formula:

$$
\begin{aligned}
\mathcal{W}^{2}\left(\rho_{0}, \rho_{1}\right)=\inf _{\rho, A} & \left\{\int_{0}^{1} \sum_{j} \operatorname{Tr}\left[\left(\partial_{j} A\right)^{*} \rho \bullet \partial_{j} A\right] \mathrm{d} t:\right. \\
& \left.\partial_{t} \rho+\sum_{j} \partial_{j}^{\dagger}\left(\rho \bullet \partial_{j} A\right)=0, \quad \rho: \rho_{0} \rightsquigarrow \rho_{1}\right\}
\end{aligned}
$$

where $\rho \bullet B:=\int_{0}^{1} \rho^{s} B \rho^{1-s} \mathrm{~d} s$.

Quantum JKO: the general case

Quantum JKO: the general case

- Let $\mathcal{P}_{t}^{\dagger}$ be a CPTP-semigroup satisfying σ-DBC.

Quantum JKO: the general case

- Let $\mathcal{P}_{t}^{\dagger}$ be a CPTP-semigroup satisfying σ-DBC.
- Is there a non-commutative chain rule of the form $\sigma \nabla(\rho / \sigma)=\rho \nabla(\log \rho-\log \sigma)$?

Quantum JKO: the general case

- Let $\mathcal{P}_{t}^{\dagger}$ be a CPTP-semigroup satisfying σ-DBC.
- Is there a non-commutative chain rule of the form $\sigma \nabla(\rho / \sigma)=\rho \nabla(\log \rho-\log \sigma)$?
- We have

$$
\sigma^{1 / 2} \partial_{j}\left(\sigma^{-1 / 2} \rho \sigma^{-1 / 2}\right) \sigma^{1 / 2}=\rho \bullet_{j}\left(\partial_{j}(\log \rho-\log \sigma)\right),
$$

Quantum JKO: the general case

- Let $\mathcal{P}_{t}^{\dagger}$ be a CPTP-semigroup satisfying σ-DBC.
- Is there a non-commutative chain rule of the form $\sigma \nabla(\rho / \sigma)=\rho \nabla(\log \rho-\log \sigma)$?
- We have

$$
\sigma^{1 / 2} \partial_{j}\left(\sigma^{-1 / 2} \rho \sigma^{-1 / 2}\right) \sigma^{1 / 2}=\rho \bullet_{j}\left(\partial_{j}(\log \rho-\log \sigma)\right)
$$

where

$$
\rho \bullet_{j} A=\int_{0}^{1}\left(e^{-\omega_{j} \beta / 2} \rho\right)^{1-s} A\left(e^{\omega_{j} \beta / 2} \rho\right)^{s} \mathrm{~d} s
$$

Quantum JKO: the general case

- Let $\mathcal{P}_{t}^{\dagger}$ be a CPTP-semigroup satisfying σ-DBC.
- Is there a non-commutative chain rule of the form $\sigma \nabla(\rho / \sigma)=\rho \nabla(\log \rho-\log \sigma)$?
- We have

$$
\sigma^{1 / 2} \partial_{j}\left(\sigma^{-1 / 2} \rho \sigma^{-1 / 2}\right) \sigma^{1 / 2}=\rho \bullet_{j}\left(\partial_{j}(\log \rho-\log \sigma)\right),
$$

where

$$
\rho \bullet_{j} A=\int_{0}^{1}\left(e^{-\omega_{j} \beta / 2} \rho\right)^{1-s} A\left(e^{\omega_{j} \beta / 2} \rho\right)^{s} \mathrm{~d} s
$$

Quantum JKO-Theorem II (Carlen-M. , Mielke-Mittnenzweig 2016) Assume that $\mathcal{P}_{t}^{\dagger}=e^{t \mathcal{L}^{\dagger}}$ satisfies detailed balance w.r.t. σ.

Quantum JKO: the general case

- Let $\mathcal{P}_{t}^{\dagger}$ be a CPTP-semigroup satisfying σ-DBC.
- Is there a non-commutative chain rule of the form $\sigma \nabla(\rho / \sigma)=\rho \nabla(\log \rho-\log \sigma)$?
- We have

$$
\sigma^{1 / 2} \partial_{j}\left(\sigma^{-1 / 2} \rho \sigma^{-1 / 2}\right) \sigma^{1 / 2}=\rho \bullet_{j}\left(\partial_{j}(\log \rho-\log \sigma)\right)
$$

where

$$
\rho \bullet_{j} A=\int_{0}^{1}\left(e^{-\omega_{j} \beta / 2} \rho\right)^{1-s} A\left(e^{\omega_{j} \beta / 2} \rho\right)^{s} \mathrm{~d} s
$$

Quantum JKO-Theorem II (Carlen-M. , Mielke-Mittnenzweig 2016)

Assume that $\mathcal{P}_{t}^{\dagger}=e^{t \mathcal{L}^{\dagger}}$ satisfies detailed balance w.r.t. σ. Then, the Lindblad equation $\partial_{t} \rho=\mathcal{L}^{\dagger} \rho$ is the gradient flow equation for the quantum relative entropy $\operatorname{Ent}(\cdot \mid \sigma)$ w.r.t the metric \mathcal{W}.

Geodesic convexity of the entropy

Geodesic convexity of the entropy

- How to prove geod. convexity of the entropy in $\left(\mathscr{P}\left(\mathbf{R}^{n}\right), W_{2}\right)$?

Geodesic convexity of the entropy

- How to prove geod. convexity of the entropy in $\left(\mathscr{P}\left(\mathbf{R}^{n}\right), W_{2}\right)$?
- Suffices: $\quad \frac{1}{2 t}\left[W_{2}^{2}\left(\nu, \mathcal{P}_{t} \rho\right)-W_{2}^{2}(\nu, \rho)\right] \leq \operatorname{Ent}(\nu)-\operatorname{Ent}\left(\mathcal{P}_{t} \rho\right)$

Geodesic convexity of the entropy

- How to prove geod. convexity of the entropy in $\left(\mathscr{P}\left(\mathbf{R}^{n}\right), W_{2}\right)$?
- Suffices: $\quad \frac{1}{2 t}\left[W_{2}^{2}\left(\nu, \mathcal{P}_{t} \rho\right)-W_{2}^{2}(\nu, \rho)\right] \leq \operatorname{Ent}(\nu)-\operatorname{Ent}\left(\mathcal{P}_{t} \rho\right)$
- Take a geodesic from $\rho_{0}=\nu$ to $\rho_{1}=\rho: \quad \partial_{s} \rho_{s}+\nabla \cdot V_{s}=0$.

Geodesic convexity of the entropy

- How to prove geod. convexity of the entropy in $\left(\mathscr{P}\left(\mathbf{R}^{n}\right), W_{2}\right)$?
- Suffices: $\quad \frac{1}{2 t}\left[W_{2}^{2}\left(\nu, \mathcal{P}_{t} \rho\right)-W_{2}^{2}(\nu, \rho)\right] \leq \operatorname{Ent}(\nu)-\operatorname{Ent}\left(\mathcal{P}_{t} \rho\right)$
- Take a geodesic from $\rho_{0}=\nu$ to $\rho_{1}=\rho: \quad \partial_{s} \rho_{s}+\nabla \cdot V_{s}=0$.
- Set $\rho_{s}^{t}=\mathcal{P}_{s t} \rho_{s}$. Then: $\rho_{0}^{t}=\nu, \rho_{1}^{t}=\mathcal{P}_{t} \rho, \quad \partial_{s} \rho_{s}^{t}+\nabla \cdot V_{s}^{t}=0$, where

$$
V_{s}^{t}=P_{s t} V_{s}-t \nabla \rho_{s}^{t} .
$$

Geodesic convexity of the entropy

- How to prove geod. convexity of the entropy in $\left(\mathscr{P}\left(\mathbf{R}^{n}\right), W_{2}\right)$?
- Suffices: $\quad \frac{1}{2 t}\left[W_{2}^{2}\left(\nu, \mathcal{P}_{t} \rho\right)-W_{2}^{2}(\nu, \rho)\right] \leq \operatorname{Ent}(\nu)-\operatorname{Ent}\left(\mathcal{P}_{t} \rho\right)$
- Take a geodesic from $\rho_{0}=\nu$ to $\rho_{1}=\rho: \quad \partial_{s} \rho_{s}+\nabla \cdot V_{s}=0$.
- Set $\rho_{s}^{t}=\mathcal{P}_{s t} \rho_{s}$. Then: $\rho_{0}^{t}=\nu, \rho_{1}^{t}=\mathcal{P}_{t} \rho, \quad \partial_{s} \rho_{s}^{t}+\nabla \cdot V_{s}^{t}=0$, where

$$
V_{s}^{t}=P_{s t} V_{s}-t \nabla \rho_{s}^{t} .
$$

We obtain

$$
\begin{aligned}
W_{2}^{2}\left(\nu, \mathcal{P}_{t} \rho\right) & \leq \int_{0}^{1} \int_{\mathbf{R}^{n}} \frac{\left|V_{s}^{t}\right|^{2}}{\rho_{s}^{t}} \mathrm{~d} x \mathrm{~d} s \\
& =\int_{0}^{1} \int_{\mathbf{R}^{n}}\left[\frac{\left|\mathcal{P}_{s t} V_{s}\right|^{2}}{\mathcal{P}_{s t} \rho_{s}}-2 t \frac{V_{s}^{t} \cdot \nabla \rho_{s}^{t}}{\rho_{s}^{t}}-t^{2} \frac{\left|\nabla \rho_{s}^{t}\right|^{2}}{\rho_{s}^{t}}\right] \mathrm{d} x \mathrm{~d} s \\
& \leq \int_{0}^{1} \int_{\mathbf{R}^{n}} \frac{\left|V_{s}\right|^{2}}{\rho_{s}} \mathrm{~d} x \mathrm{~d} s-2 t \int_{0}^{1} \partial_{s} \operatorname{Ent}\left(\rho_{s}^{t}\right) \mathrm{d} s \\
& =W_{2}^{2}(\nu, \rho)-2 t\left(\operatorname{Ent}\left(\mathcal{P}_{t} \rho\right)-\operatorname{Ent}(\nu)\right)
\end{aligned}
$$

Geodesic convexity of the quantum entropy

Key ingredients of the proof:

Geodesic convexity of the quantum entropy

Key ingredients of the proof:

- Intertwining: $\partial_{j} \circ \mathcal{P}_{t}=\mathcal{P}_{t} \circ \partial_{j}$

Geodesic convexity of the quantum entropy

Key ingredients of the proof:

- Intertwining: $\partial_{j} \circ \mathcal{P}_{t}=\mathcal{P}_{t} \circ \partial_{j}$
- Convexity of the function $\mathbf{R}_{+} \times \mathbf{R}^{n} \ni(r, a) \mapsto \frac{|a|^{2}}{r}$

Geodesic convexity of the quantum entropy

Key ingredients of the proof:

- Intertwining: $\partial_{j} \circ \mathcal{P}_{t}=\mathcal{P}_{t} \circ \partial_{j}$
- Convexity of the function $\mathbf{R}_{+} \times \mathbf{R}^{n} \ni(r, a) \mapsto \frac{|a|^{2}}{r}$

Non-commutative analogues for quantum OU:

Geodesic convexity of the quantum entropy

Key ingredients of the proof:

- Intertwining: $\partial_{j} \circ \mathcal{P}_{t}=\mathcal{P}_{t} \circ \partial_{j}$
- Convexity of the function $\mathbf{R}_{+} \times \mathbf{R}^{n} \ni(r, a) \mapsto \frac{|a|^{2}}{r}$

Non-commutative analogues for quantum OU:

- $\partial_{j} \circ \mathcal{P}_{t}=e^{-\lambda_{\beta} t} \mathcal{P}_{t} \circ \partial_{j}$ where $\lambda_{\beta}=\sinh (\beta / 2)$

Geodesic convexity of the quantum entropy

Key ingredients of the proof:

- Intertwining: $\partial_{j} \circ \mathcal{P}_{t}=\mathcal{P}_{t} \circ \partial_{j}$
- Convexity of the function $\mathbf{R}_{+} \times \mathbf{R}^{n} \ni(r, a) \mapsto \frac{|a|^{2}}{r}$

Non-commutative analogues for quantum OU:

- $\partial_{j} \circ \mathcal{P}_{t}=e^{-\lambda_{\beta} t} \mathcal{P}_{t} \circ \partial_{j}$ where $\lambda_{\beta}=\sinh (\beta / 2)$
- $(R, A) \mapsto \operatorname{Tr}\left[\int_{0}^{\infty}\left(t l+e^{-\omega / 2} R\right)^{-1} A^{*}\left(t l+e^{\omega / 2} R\right)^{-1} A \mathrm{~d} t\right]$
is jointly convex on $\mathcal{M}_{n}^{+} \times \mathcal{M}_{n}$ for all $\omega \in \mathbf{R}$

Geodesic convexity of the quantum entropy

Key ingredients of the proof:

- Intertwining: $\partial_{j} \circ \mathcal{P}_{t}=\mathcal{P}_{t} \circ \partial_{j}$
- Convexity of the function $\mathbf{R}_{+} \times \mathbf{R}^{n} \ni(r, a) \mapsto \frac{|a|^{2}}{r}$

Non-commutative analogues for quantum OU:

- $\partial_{j} \circ \mathcal{P}_{t}=e^{-\lambda_{\beta} t} \mathcal{P}_{t} \circ \partial_{j}$ where $\lambda_{\beta}=\sinh (\beta / 2)$
- $(R, A) \mapsto \operatorname{Tr}\left[\int_{0}^{\infty}\left(t l+e^{-\omega / 2} R\right)^{-1} A^{*}\left(t l+e^{\omega / 2} R\right)^{-1} A \mathrm{~d} t\right]$
is jointly convex on $\mathcal{M}_{n}^{+} \times \mathcal{M}_{n}$ for all $\omega \in \mathbf{R}$

Theorem [Carlen-M. 2016]

Let $\beta>0$ and let \mathcal{P}_{t} be the quantum OU semigroup.

Geodesic convexity of the quantum entropy

Key ingredients of the proof:

- Intertwining: $\partial_{j} \circ \mathcal{P}_{t}=\mathcal{P}_{t} \circ \partial_{j}$
- Convexity of the function $\mathbf{R}_{+} \times \mathbf{R}^{n} \ni(r, a) \mapsto \frac{|a|^{2}}{r}$

Non-commutative analogues for quantum OU:

- $\partial_{j} \circ \mathcal{P}_{t}=e^{-\lambda_{\beta} t} \mathcal{P}_{t} \circ \partial_{j}$ where $\lambda_{\beta}=\sinh (\beta / 2)$
- $(R, A) \mapsto \operatorname{Tr}\left[\int_{0}^{\infty}\left(t l+e^{-\omega / 2} R\right)^{-1} A^{*}\left(t l+e^{\omega / 2} R\right)^{-1} A \mathrm{~d} t\right]$
is jointly convex on $\mathcal{M}_{n}^{+} \times \mathcal{M}_{n}$ for all $\omega \in \mathbf{R}$

Theorem [Carlen-M. 2016]

Let $\beta>0$ and let \mathcal{P}_{t} be the quantum OU semigroup. Then:

- The relative entropy $\operatorname{Ent}\left(\cdot \mid \sigma_{\beta}\right)$ is geodesically λ_{β}-convex.

Geodesic convexity of the quantum entropy

Key ingredients of the proof:

- Intertwining: $\partial_{j} \circ \mathcal{P}_{t}=\mathcal{P}_{t} \circ \partial_{j}$
- Convexity of the function $\mathbf{R}_{+} \times \mathbf{R}^{n} \ni(r, a) \mapsto \frac{|a|^{2}}{r}$

Non-commutative analogues for quantum OU:

- $\partial_{j} \circ \mathcal{P}_{t}=e^{-\lambda_{\beta} t} \mathcal{P}_{t} \circ \partial_{j}$ where $\lambda_{\beta}=\sinh (\beta / 2)$
- $(R, A) \mapsto \operatorname{Tr}\left[\int_{0}^{\infty}\left(t l+e^{-\omega / 2} R\right)^{-1} A^{*}\left(t l+e^{\omega / 2} R\right)^{-1} A \mathrm{~d} t\right]$
is jointly convex on $\mathcal{M}_{n}^{+} \times \mathcal{M}_{n}$ for all $\omega \in \mathbf{R}$

Theorem [Carlen-M. 2016]

Let $\beta>0$ and let \mathcal{P}_{t} be the quantum OU semigroup. Then:

- The relative entropy $\operatorname{Ent}\left(\cdot \mid \sigma_{\beta}\right)$ is geodesically λ_{β}-convex.
- Consequently, $\operatorname{Ent}\left(\mathcal{P}_{t}^{\dagger} \rho \mid \sigma\right) \leq e^{-2 \lambda_{\beta} t} \operatorname{Ent}(\rho \mid \sigma)$

Thank you!

