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Diffusion equations via optimal transport

Jordan–Kinderlehrer–Otto ’98: Beautiful connection between

• the 2-Kantorovich metric on the space of probability measures

W2(µ, ν) = inf
γ∈Π(µ,ν)

√∫

Rn×Rn

|x − y |2 dγ(x , y)

• the Boltzmann-Shannon entropy

Ent(µ) =

∫

Rn

ρ(x) log ρ(x)dx , if dµ(x) = ρ(x)dx

• the heat equation

∂tµ = ∆µ

Theorem (J-K-O ’98)

The heat flow is the gradient flow
of the entropy w.r.t W2.

Ent(�) =

�
�(x) log �(x) dx

(Prob(Rn), W2)
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1. u solves the gradient flow equation u′(t) = −∇ϕ(u(t)) .

2. u solves the evolution variational inequality

1
2

d
dt |u(t)− y |2 ≤ ϕ(y)− ϕ(u(t)) ∀y .

(De Giorgi ’93, Ambrosio–Gigli–Savaré ’05)
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Diffusion equations via optimal transport

Advantages: The optimal transport approach to diffusion equations

• applies to a large class of equations (Fokker Planck, porous
medium, McKean-Vlasov equations, . . . )

• is physically appealing

• yields functional inequalities and equilibration rates

• applies to non-smooth problems

• leads to the synthetic notion of Ricci curvature:
(Lott–Sturm–Villani theory in metric measure spaces)
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What about discrete spaces?

Example: 2-point space X = {0, 1}.

• Set µα := (1− α)δ0 + αδ1 for α ∈ [0, 1]. Then:

W2(µα, µβ) =
√
|α− β| .

• Suppose that
(
µα(t)

)
is a constant speed geodesic. Then:

√
|α(t)− α(s)| = W2(µα(t), µα(s)) = c |t − s| ,

Thus: t 7→ α(t) is 2-Hölder, hence constant.

• Conclusion: there are no non-trivial W2-geodesics. In fact:

(P(X ),W2) is a geodesic space ⇔ (X , d) is a geodesic space.

Moreover: no curves of finite length  no gradient flows.

Question: Is there a discrete JKO-Theorem?
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Discrete setting

Setting

• X : finite set

• Q(x , y) : transition rate from x to y

• π: reversible measure, ∀x , y : Q(x , y)π(x) = Q(y , x)π(y)

Heat flow

• Markov generator: Lψ(x) :=
∑

y Q(x , y)(ψ(y)− ψ(x))

• Continuous time Markov semigroup: Pt = etL

Relative Entropy

• P(X ) :=
{
ρ : X → R+ |

∑
x∈X ρ(x)π(x) = 1

}

• Ent(ρ) :=
∑

x∈X
ρ(x) log ρ(x)π(x) , ρ ∈ P(X ) .
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w.r.t. a different metric?

On the two point space: Yes!
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∫ β

α

√
arctanh(2r − 1)

2r − 1
dr , 0 ≤ α ≤ β ≤ 1.

What about the general discrete case?
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0
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Definition of the metric W
Benamou-Brenier formula in Rn

W 2
2 (ρ0, ρ1) = inf

ρ,ψ

{∫ 1

0

∫

Rn

|∇ψt(x)|2 ρt(x) dx dt

}

s.t. ∂tρ+div(ρ∇ψ) = 0 and ρt=0 = ρ0, ρt=1 = ρ1 .

Definition in the discrete case

W(ρ0, ρ1)2

:=

inf
ρ,ψ

{∫ 1

0

∑

x ,y∈X
(ψt(x)− ψt(y))2ρ̂t(x , y)Q(x , y)π(x)dt

}

s.t.
d

dt
ρt(x) +

∑

y∈X
ρ̂t(x , y)(ψt(x)− ψt(y))Q(x , y) = 0 ∀x

Use the logarithmic mean as the “density on an edge”!

ρ̂(x , y) :=

∫ 1

0
ρ(x)1−αρ(y)α dα
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Discrete heat flow as gradient flow

• W defines a (Riemannian) metric on P(X ).

Discrete JKO-Theorem (M. , Mielke)

The heat flow is the gradient flow of the entropy w.r.t. W.

Why the logarithmic mean?

• Represent heat equation as continuity equation:

∂tρ = ∆ρ ⇐⇒
{
∂tρ+ div(ρΨ) = 0
Ψ = −∇ log ρ

• Log-mean compensates for the lack of discrete chain rule:

ρ̂(x , y) =

∫ 1

0
ρ(x)1−αρ(y)α dα =

ρ(x)− ρ(y)

log ρ(x)− log ρ(y)

Starting point for a notion of discrete Ricci curvature (with Erbar)
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Is there a JKO theorem for

dissipative quantum systems?



Dissipative Quantum mechanics

Dynamics of open quantum systems

• Let H be a (finite-dimensional) Hilbert space

• Let P(H) = {ρ ∈ B(H) : ρ = ρ∗ ≥ 0 ,Tr[ρ] = 1} be the set
of density matrices

• Let P†t = etL
†

be a TPCP semigroup acting on P(H), i.e.,

• P†
t is trace-preserving, i.e., Tr[P†

t ρ] = Tr[ρ] for all t ≥ 0

• P†
t is completely positive, i.e., P†

t ⊗ IMn preserves positivity ∀n

• Then, L† can be written in Lindblad form

L†ρ = −i [H, ρ] +
∑

j [Vj , ρV
∗
j ] + [Vjρ,V

∗
j ] ,

where the Hamiltonian H is self-adjoint, and Vj ∈ B(H).
[Gorini/Kossakowski/Sudarshan, Lindblad 1976]
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Monotonicity of the quantum relative entropy

• General form of completely positive trace preserving
Markovian dynamics:

∂tρ = L†ρ (Lindblad equation)

where L†ρ = −i [H, ρ] +
∑

j [Vj , ρV
∗
j ] + [Vjρ,V

∗
j ] .

• Assume that σ ∈ H is a stationary state, i.e., L†σ = 0.

• Let Ent(ρ|σ) = Tr[ρ(log ρ− log σ)] be the quantum relative
entropy.

• [Spohn ’78] Along the Lindblad equation, t 7→ Ent(ρt |σ)
decreases.

Question

Can we formulate the Lindblad equation ∂tρ = L†ρ as gradient flow
of the relative entropy?
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Example: the quantum Ornstein-Uhlenbeck semigroup

• Let a be an operator satisfying [a, a∗] = I

• Concrete realisation: H = L2(R, γ), γ Gaussian measure,
a = ∂x , a∗ = x − ∂x

• For β > 0, consider the quantum OU-operator

L†βρ =
1

2
eβ/2

(
[a, ρa∗] + [aρ, a∗]

)
+

1

2
e−β/2

(
[a∗, ρa] + [a∗ρ, a]

)

• ∃! stationary state: σβ = Z−1e−βH ,
where H = a∗a = ∂2

x − x∂x is the classical OU-operator

Conjecture: [Huber/König/Vershynina ’16]

Ent(P†t ρ|σβ) ≤ e−2λβt Ent(ρ|σβ) where λβ = sinh(β/2) .
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Quantum detailed balance

• Let (P†t ) be a TPCP semigroup on B(H).

• Let Pt be its adjoint w.r.t. the scalar product
〈A,B〉 = Tr[A∗B] on B(H).

• We say that a density operator σ satisfies detailed balance
if Pt is self-adjoint w.r.t. 〈A,B〉σ := Tr[σA∗B].

Structure of Lindblad operators with detailed balance [Alicki ’76]

If σ satisfies detailed balance for (Pt), then

L† =
∑

j e
ωj/2L†j , L†j ρ = [Vj , ρV

∗
j ] + [Vjρ,V

∗
j ] ,

where {Vj}j = {V ∗j }j and [Vj , log σ] = −ωjVj for some ωj ∈ R .
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Gradient flow structures

• Can we formulate the Lindblad equation ∂tρ = L†ρ as
gradient flow of the relative entropy?

• Assume first: σ = I . Then: L = L†.
• Write ∂jA = [Vj ,A]. Then L has the div-form representation

LA = −
∑

j

∂†j ∂jA

• Ansatz: define a distance W on P(H) by

W(ρ0, ρ1)2 = inf
ρ,A

{∫ 1

0

∑

j

Tr[(∂jA)∗ρ • ∂jA]dt

}

s.t. ∂tρ+
∑

j ∂
†
j (ρ • ∂jA) = 0, ρ : ρ0  ρ1 .

• How to define the product • ?
Need: non-commutative version of the classical chain rule

∇ρ = ρ∇ log ρ ?
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A non-commutative chain rule

Is there a non-commutative chain rule “∂jρ = ρ • ∂j log ρ”?

• Recall that ∂jA = [Vj ,A]

• Observe: ∂j(AB) = (∂jA)B + A ∂jB

• Consequently:

∂j(A
n) =

n−1∑

k=0

Ak (∂jA)An−k−1

• Set ρ = A1/n. Then:

∂jρ =
n−1∑

k=0

ρk/n (∂jρ
1/n)ρ1−(k+1)/n

n→∞ : ∂jρ =

∫ 1

0
ρs (∂j log ρ)ρ1−s ds
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Quantum JKO

Quantum JKO-Theorem I (Carlen-M. , Mielke 2014 )

Let the TPCP semigroup P†t = etL
†

satisfy det. balance w.r.t. I .
Then, the Lindblad equation ∂tρ = L†ρ is the gradient flow equation
for the von Neumann entropy Ent(ρ) = Tr[ρ log ρ] w.r.t W.

W is defined by the non-commutative Benamou-Brenier formula:

W2(ρ0, ρ1) = inf
ρ,A

{∫ 1

0

∑

j

Tr[(∂jA)∗ρ • ∂jA]dt :

∂tρ+
∑

j

∂†j (ρ • ∂jA) = 0, ρ : ρ0  ρ1

}

where ρ • B :=
∫ 1

0 ρ
s Bρ1−s ds.
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Quantum JKO: the general case

• Let P†t be a CPTP-semigroup satisfying σ-DBC.

• Is there a non-commutative chain rule of the form
σ∇(ρ/σ) = ρ∇(log ρ− log σ) ?

• We have

σ1/2∂j
(
σ−1/2ρσ−1/2

)
σ1/2 = ρ •j

(
∂j(log ρ− log σ)

)
,

where

ρ •j A =

∫ 1

0

(
e−ωjβ/2ρ

)1−s
A
(
eωjβ/2ρ

)s
ds

Quantum JKO-Theorem II (Carlen-M. , Mielke-Mittnenzweig 2016)

Assume that P†t = etL
†

satisfies detailed balance w.r.t. σ.
Then, the Lindblad equation ∂tρ = L†ρ is the gradient flow equation
for the quantum relative entropy Ent(·|σ) w.r.t the metric W.
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Geodesic convexity of the entropy

• How to prove geod. convexity of the entropy in (P(Rn),W2)?

• Suffices: 1
2t [W 2

2 (ν,Ptρ)−W 2
2 (ν, ρ)] ≤ Ent(ν)− Ent(Ptρ)

• Take a geodesic from ρ0 = ν to ρ1 = ρ: ∂sρs +∇ · Vs = 0.

• Set ρts = Pstρs . Then: ρt0 = ν, ρt1 = Ptρ, ∂sρ
t
s +∇ · V t

s = 0,
where

V t
s = PstVs − t∇ρts .

We obtain

W 2
2 (ν,Ptρ) ≤

∫ 1

0

∫

Rn

|V t
s |2

ρts
dx ds

=

∫ 1

0

∫

Rn

[
|PstVs |2

Pstρs
− 2t

V t
s · ∇ρts
ρts

− t2 |∇ρts |2

ρts

]
dx ds

≤
∫ 1

0

∫

Rn

|Vs |2

ρs
dx ds − 2t

∫ 1

0
∂s Ent(ρts)ds

= W 2
2 (ν, ρ)− 2t

(
Ent(Ptρ)− Ent(ν)

)
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Geodesic convexity of the quantum entropy

Key ingredients of the proof:

• Intertwining: ∂j ◦ Pt = Pt ◦ ∂j
• Convexity of the function R+ × Rn 3 (r , a) 7→ |a|2

r

Non-commutative analogues for quantum OU:

• ∂j ◦ Pt = e−λβtPt ◦ ∂j where λβ = sinh(β/2)

• (R,A) 7→ Tr

[ ∫ ∞

0
(tI + e−ω/2R)−1A∗(tI + eω/2R)−1Adt

]

is jointly convex on M+
n ×Mn for all ω ∈ R

Theorem [Carlen-M. 2016]

Let β > 0 and let Pt be the quantum OU semigroup. Then:

• The relative entropy Ent(·|σβ) is geodesically λβ-convex.

• Consequently, Ent(P†t ρ|σ) ≤ e−2λβt Ent(ρ|σ)
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• Convexity of the function R+ × Rn 3 (r , a) 7→ |a|2

r

Non-commutative analogues for quantum OU:

• ∂j ◦ Pt = e−λβtPt ◦ ∂j where λβ = sinh(β/2)

• (R,A) 7→ Tr

[ ∫ ∞

0
(tI + e−ω/2R)−1A∗(tI + eω/2R)−1Adt

]

is jointly convex on M+
n ×Mn for all ω ∈ R

Theorem [Carlen-M. 2016]

Let β > 0 and let Pt be the quantum OU semigroup. Then:
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• Consequently, Ent(P†t ρ|σ) ≤ e−2λβt Ent(ρ|σ)



Thank you!


