Gradient flows and entropy inequalities for dissipative quantum systems

Jan Maas (IST Austria)

joint work with Eric Carlen

Analysis and Geometry on Graphs and Manifolds Potsdam, 2 August 2017

Established by the European Commission

Starting point: Diffusion equations via optimal transport

Jordan-Kinderlehrer-Otto '98: Beautiful connection between

• the 2-Kantorovich metric on the space of probability measures

$$W_2(\mu, \nu) = \inf_{\gamma \in \Pi(\mu, \nu)} \sqrt{\int_{\mathbf{R}^n imes \mathbf{R}^n} |x - y|^2 \, \mathrm{d}\gamma(x, y)}$$

Jordan-Kinderlehrer-Otto '98: Beautiful connection between

• the 2-Kantorovich metric on the space of probability measures

$$W_2(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \sqrt{\int_{\mathbf{R}^n \times \mathbf{R}^n} |x-y|^2 \, \mathrm{d}\gamma(x,y)}$$

• the Boltzmann-Shannon entropy

$$\operatorname{Ent}(\mu) = \int_{\mathbf{R}^n} \rho(x) \log \rho(x) \, \mathrm{d}x, \quad \text{if} \quad \mathrm{d}\mu(x) = \rho(x) \, \mathrm{d}x$$

Jordan-Kinderlehrer-Otto '98: Beautiful connection between

• the 2-Kantorovich metric on the space of probability measures

$$W_2(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \sqrt{\int_{\mathbf{R}^n \times \mathbf{R}^n} |x-y|^2 \, \mathrm{d}\gamma(x,y)}$$

• the Boltzmann-Shannon entropy

$$\operatorname{Ent}(\mu) = \int_{\mathbf{R}^n} \rho(x) \log \rho(x) \, \mathrm{d}x, \quad \text{if} \quad \mathrm{d}\mu(x) = \rho(x) \, \mathrm{d}x$$

• the heat equation

$$\partial_t \mu = \Delta \mu$$

Jordan-Kinderlehrer-Otto '98: Beautiful connection between

• the 2-Kantorovich metric on the space of probability measures

$$W_2(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \sqrt{\int_{\mathbf{R}^n \times \mathbf{R}^n} |x-y|^2 \, \mathrm{d}\gamma(x,y)}$$

• the Boltzmann-Shannon entropy

$$\operatorname{Ent}(\mu) = \int_{\mathbf{R}^n} \rho(x) \log \rho(x) \, \mathrm{d}x, \quad \text{if} \quad \mathrm{d}\mu(x) = \rho(x) \, \mathrm{d}x$$

• the heat equation

$$\partial_t \mu = \Delta \mu$$

Theorem (J-K-O '98)

The heat flow is the gradient flow of the entropy w.r.t W_2 .

Theorem (JORDAN-KINDERLEHRER-OTTO '98)

The heat flow is the gradient flow of the entropy w.r.t W_2

Theorem (JORDAN-KINDERLEHRER-OTTO '98)

The heat flow is the gradient flow of the entropy w.r.t W_2

How to make sense of gradient flows in metric spaces?

Theorem (JORDAN-KINDERLEHRER-OTTO '98)

The heat flow is the gradient flow of the entropy w.r.t W_2

How to make sense of gradient flows in metric spaces?

Gradient flows in \mathbb{R}^n Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ smooth and convex. For $u : \mathbb{R}_+ \to \mathbb{R}^n$ TFAE: 1. *u* solves the gradient flow equation $u'(t) = -\nabla \varphi(u(t))$.

Theorem (JORDAN-KINDERLEHRER-OTTO '98)

The heat flow is the gradient flow of the entropy w.r.t W_2

How to make sense of gradient flows in metric spaces?

Gradient flows in \mathbf{R}^n

Let $\varphi : \mathbf{R}^n \to \mathbf{R}$ smooth and convex. For $u : \mathbf{R}_+ \to \mathbf{R}^n$ TFAE:

- 1. *u* solves the gradient flow equation $u'(t) = -\nabla \varphi(u(t))$.
- 2. *u* solves the evolution variational inequality

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|u(t)-y|^2 \leq \varphi(y)-\varphi(u(t)) \qquad \forall y \; .$$

(DE GIORGI '93, AMBROSIO–GIGLI–SAVARÉ '05)

Theorem (JORDAN-KINDERLEHRER-OTTO '98)

The heat flow is the gradient flow of the entropy w.r.t W_2 , i.e., $\partial_t \mu = \Delta \mu \iff \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} W_2(\mu_t, \nu)^2 \leq \mathrm{Ent}(\nu) - \mathrm{Ent}(\mu_t) \quad \forall \nu$.

How to make sense of gradient flows in metric spaces?

Gradient flows in \mathbf{R}^n

Let $\varphi : \mathbf{R}^n \to \mathbf{R}$ smooth and convex. For $u : \mathbf{R}_+ \to \mathbf{R}^n$ TFAE:

- 1. *u* solves the gradient flow equation $u'(t) = -\nabla \varphi(u(t))$.
- 2. *u* solves the evolution variational inequality

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|u(t)-y|^2 \leq \varphi(y)-\varphi(u(t)) \qquad \forall y \; .$$

(DE GIORGI '93, AMBROSIO–GIGLI–SAVARÉ '05)

Advantages: The optimal transport approach to diffusion equations

• applies to a large class of equations (Fokker Planck, porous medium, McKean-Vlasov equations, ...)

- applies to a large class of equations (Fokker Planck, porous medium, McKean-Vlasov equations, ...)
- is physically appealing

- applies to a large class of equations (Fokker Planck, porous medium, McKean-Vlasov equations, ...)
- is physically appealing
- yields functional inequalities and equilibration rates

- applies to a large class of equations (Fokker Planck, porous medium, McKean-Vlasov equations, ...)
- is physically appealing
- yields functional inequalities and equilibration rates
- applies to non-smooth problems

- applies to a large class of equations (Fokker Planck, porous medium, McKean-Vlasov equations, ...)
- is physically appealing
- yields functional inequalities and equilibration rates
- applies to non-smooth problems
- leads to the synthetic notion of Ricci curvature: (Lott-Sturm-Villani theory in metric measure spaces)

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha\delta_1$ for $\alpha \in [0, 1]$.

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha\delta_1$ for $\alpha \in [0, 1]$. Then:

$$W_2(\mu_{lpha},\mu_{eta})=\sqrt{|lpha-eta|}$$
 .

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha\delta_1$ for $\alpha \in [0, 1]$. Then:

$$W_2(\mu_{lpha},\mu_{eta})=\sqrt{|lpha-eta|}$$
 .

• Suppose that $(\mu_{\alpha(t)})$ is a constant speed geodesic.

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha\delta_1$ for $\alpha \in [0, 1]$. Then:

$$W_2(\mu_{lpha},\mu_{eta})=\sqrt{|lpha-eta|}$$
 .

• Suppose that $(\mu_{\alpha(t)})$ is a constant speed geodesic. Then:

$$W_2(\mu_{\alpha(t)},\mu_{\alpha(s)})=c|t-s|,$$

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha\delta_1$ for $\alpha \in [0, 1]$. Then:

$$W_2(\mu_{lpha},\mu_{eta})=\sqrt{|lpha-eta|}$$
 .

• Suppose that $(\mu_{\alpha(t)})$ is a constant speed geodesic. Then:

$$\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s|,$$

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha\delta_1$ for $\alpha \in [0, 1]$. Then:

$$W_2(\mu_{lpha},\mu_{eta})=\sqrt{|lpha-eta|}$$
 .

• Suppose that $(\mu_{\alpha(t)})$ is a constant speed geodesic. Then:

$$\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s|,$$

Thus: $t \mapsto \alpha(t)$ is 2-Hölder, hence constant.

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha\delta_1$ for $\alpha \in [0, 1]$. Then:

$$W_2(\mu_{lpha},\mu_{eta})=\sqrt{|lpha-eta|}$$
 .

• Suppose that $(\mu_{\alpha(t)})$ is a constant speed geodesic. Then:

$$\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s|,$$

Thus: $t \mapsto \alpha(t)$ is 2-Hölder, hence constant.

• Conclusion: there are no non-trivial W_2 -geodesics. In fact:

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha\delta_1$ for $\alpha \in [0, 1]$. Then:

$$W_2(\mu_{lpha},\mu_{eta})=\sqrt{|lpha-eta|}$$
 .

• Suppose that $(\mu_{\alpha(t)})$ is a constant speed geodesic. Then:

$$\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s|,$$

Thus: $t \mapsto \alpha(t)$ is 2-Hölder, hence constant.

• Conclusion: there are no non-trivial W₂-geodesics. In fact:

 $(\mathcal{P}(\mathcal{X}), W_2)$ is a geodesic space $\Leftrightarrow (\mathcal{X}, d)$ is a geodesic space.

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha\delta_1$ for $\alpha \in [0, 1]$. Then:

$$W_2(\mu_{lpha},\mu_{eta})=\sqrt{|lpha-eta|}$$
 .

• Suppose that $(\mu_{\alpha(t)})$ is a constant speed geodesic. Then:

$$\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s|,$$

Thus: $t \mapsto \alpha(t)$ is 2-Hölder, hence constant.

• Conclusion: there are no non-trivial W₂-geodesics. In fact:

 $(\mathcal{P}(\mathcal{X}), W_2)$ is a geodesic space $\Leftrightarrow (\mathcal{X}, d)$ is a geodesic space.

Moreover: no curves of finite length \rightsquigarrow no gradient flows.

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha\delta_1$ for $\alpha \in [0, 1]$. Then:

$$W_2(\mu_{lpha},\mu_{eta})=\sqrt{|lpha-eta|}$$
 .

• Suppose that $(\mu_{\alpha(t)})$ is a constant speed geodesic. Then:

$$\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s|,$$

Thus: $t \mapsto \alpha(t)$ is 2-Hölder, hence constant.

• Conclusion: there are no non-trivial W₂-geodesics. In fact:

 $(\mathcal{P}(\mathcal{X}), W_2)$ is a geodesic space $\Leftrightarrow (\mathcal{X}, d)$ is a geodesic space.

Moreover: no curves of finite length \rightsquigarrow no gradient flows. Question: Is there a discrete JKO-Theorem?

Discrete setting

Setting

- \mathcal{X} : finite set
- Q(x, y) : transition rate from x to y
- π : reversible measure, $\forall x, y : Q(x, y)\pi(x) = Q(y, x)\pi(y)$

Discrete setting

Setting

- \mathcal{X} : finite set
- Q(x, y) : transition rate from x to y
- π : reversible measure, $\forall x, y : Q(x, y)\pi(x) = Q(y, x)\pi(y)$

Heat flow

- Markov generator: $\mathcal{L}\psi(x) := \sum_{y} Q(x,y)(\psi(y) \psi(x))$
- Continuous time Markov semigroup: $P_t = e^{t\mathcal{L}}$

Discrete setting

Setting

- \mathcal{X} : finite set
- Q(x, y) : transition rate from x to y
- π : reversible measure, $\forall x, y : Q(x, y)\pi(x) = Q(y, x)\pi(y)$

Heat flow

- Markov generator: $\mathcal{L}\psi(x) := \sum_{y} Q(x,y)(\psi(y) \psi(x))$
- Continuous time Markov semigroup: $P_t = e^{t\mathcal{L}}$

Relative Entropy

•
$$\mathcal{P}(\mathcal{X}) := \left\{ \rho : \mathcal{X} \to \mathbf{R}_+ \mid \sum_{x \in \mathcal{X}} \rho(x) \pi(x) = 1 \right\}$$

•
$$\operatorname{Ent}(
ho) := \sum_{x \in \mathcal{X}}
ho(x) \log
ho(x) \pi(x) , \qquad
ho \in \mathcal{P}(\mathcal{X}) .$$

Question

Is the discrete heat flow the gradient flow of the entropy w.r.t. W_2 ?

Question

Is the discrete heat flow the gradient flow of the entropy w.r.t. W_2 ?

No! (reason:
$$W_2(\mu_{\alpha}, \mu_{\beta}) = \sqrt{|\alpha - \beta|}$$
)

Question

Is the discrete heat flow the gradient flow of the entropy w.r.t. a different metric?

Question

Is the discrete heat flow the gradient flow of the entropy w.r.t. a different metric?

On the two point space: Yes!

Question

Is the discrete heat flow the gradient flow of the entropy w.r.t. a different metric?

On the two point space: Yes!

$$\mathcal{W}(\mu_lpha,\mu_eta) = \int_lpha^eta \sqrt{rac{{\sf arctanh}(2r-1)}{2r-1}}\,{
m d} r, \qquad {\sf 0} \le lpha \le eta \le 1.$$
Question

Is the discrete heat flow the gradient flow of the entropy w.r.t. a different metric?

On the two point space: Yes!

$$\mathcal{W}(\mu_lpha,\mu_eta) = \int_lpha^eta \sqrt{rac{{\sf arctanh}(2r-1)}{2r-1}}\,{
m d} r, \qquad 0\leq lpha\leq eta\leq 1.$$

What about the general discrete case?

Benamou-Brenier formula in \mathbf{R}^n

$$W_2(\rho_0,\rho_1)^2 = \inf_{\rho_{\cdot},\Psi_{\cdot}} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\Psi_t(x)|^2 \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t : \\ \partial_t \rho + \nabla \cdot (\rho \Psi) = 0 , \\ \rho|_{t=0} = \rho_0 , \quad \rho|_{t=1} = \rho_1 \right\}.$$

Benamou-Brenier formula in \mathbf{R}^n

$$W_2(\rho_0,\rho_1)^2 = \inf_{\rho,\psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t : \\ \partial_t \rho + \nabla \cdot (\rho \nabla \psi) = 0 , \\ \rho|_{t=0} = \rho_0 , \quad \rho|_{t=1} = \rho_1 \right\}.$$

Benamou-Brenier formula in \mathbf{R}^n

$$\begin{aligned} W_2^2(\rho_0,\rho_1) &= \inf_{\rho,\psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \,\rho_t(x) \,\mathrm{d}x \,\mathrm{d}t \right\} \\ \text{s.t.} \quad \partial_t \rho + \mathsf{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \ . \end{aligned}$$

Benamou-Brenier formula in \mathbf{R}^n

$$\begin{split} W_2^2(\rho_0,\rho_1) &= \inf_{\rho,\psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \,\rho_t(x) \,\mathrm{d}x \,\mathrm{d}t \right\} \\ \text{s.t.} \quad \partial_t \rho + \mathsf{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \;. \end{split}$$

Definition in the discrete case

$$\mathcal{W}(\rho_0,\rho_1)^2 := \inf_{\rho,\psi} \left\{ \int_0^1 \sum_{x,y\in\mathcal{X}} (\psi_t(x) - \psi_t(y))^2 \qquad Q(x,y)\pi(x) \,\mathrm{d}t \right\}$$

s.t.

Benamou-Brenier formula in \mathbf{R}^n

$$\begin{split} W_2^2(\rho_0,\rho_1) &= \inf_{\rho,\psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \,\rho_t(x) \,\mathrm{d}x \,\mathrm{d}t \right\} \\ \text{s.t.} \quad \partial_t \rho + \mathsf{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \;. \end{split}$$

Definition in the discrete case

$$\mathcal{W}(\rho_0,\rho_1)^2 := \inf_{\rho,\psi} \left\{ \int_0^1 \sum_{x,y \in \mathcal{X}} (\psi_t(x) - \psi_t(y))^2 \qquad Q(x,y)\pi(x) \, \mathrm{d}t \right\}$$

s.t.

Problem: ρ is defined on vertices, $\nabla \psi$ is defined on edges

Benamou-Brenier formula in \mathbf{R}^n

$$\begin{aligned} W_2^2(\rho_0,\rho_1) &= \inf_{\rho,\psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \,\rho_t(x) \,\mathrm{d}x \,\mathrm{d}t \right\} \\ \text{s.t.} \quad \partial_t \rho + \mathsf{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \;. \end{aligned}$$

Definition in the discrete case

$$\mathcal{W}(\rho_0,\rho_1)^2 := \inf_{\rho,\psi} \left\{ \int_0^1 \sum_{x,y\in\mathcal{X}} (\psi_t(x) - \psi_t(y))^2 \hat{\rho}_t(x,y) Q(x,y) \pi(x) \, \mathrm{d}t \right\}$$

s.t.

Use the logarithmic mean as the "density on an edge"!

$$\hat{\rho}(x,y) := \int_0^1 \rho(x)^{1-lpha} \rho(y)^{lpha} \,\mathrm{d} lpha$$

Benamou-Brenier formula in \mathbf{R}^n

$$\begin{split} W_2^2(\rho_0,\rho_1) &= \inf_{\rho,\psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \,\rho_t(x) \,\mathrm{d}x \,\mathrm{d}t \right\} \\ \text{s.t.} \quad \partial_t \rho + \mathsf{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \;. \end{split}$$

Definition in the discrete case

$$\begin{aligned} &\mathcal{W}(\rho_0,\rho_1)^2 \\ &:= \inf_{\rho,\psi} \left\{ \int_0^1 \sum_{x,y\in\mathcal{X}} (\psi_t(x) - \psi_t(y))^2 \hat{\rho}_t(x,y) Q(x,y) \pi(x) \, \mathrm{d}t \right\} \\ &\text{s.t.} \quad \frac{\mathrm{d}}{\mathrm{d}t} \rho_t(x) + \sum_{y\in\mathcal{X}} \hat{\rho}_t(x,y) (\psi_t(x) - \psi_t(y)) Q(x,y) = 0 \qquad \forall x \end{aligned}$$

Use the logarithmic mean as the "density on an edge"!

$$\hat{\rho}(x,y) := \int_0^1 \rho(x)^{1-lpha} \rho(y)^{lpha} \, \mathrm{d} lpha$$

• \mathcal{W} defines a (Riemannian) metric on $\mathcal{P}(\mathcal{X})$.

• \mathcal{W} defines a (Riemannian) metric on $\mathcal{P}(\mathcal{X})$.

Discrete JKO-Theorem (M., MIELKE)

The heat flow is the gradient flow of the entropy w.r.t. \mathcal{W} .

• \mathcal{W} defines a (Riemannian) metric on $\mathcal{P}(\mathcal{X})$.

Discrete JKO-Theorem (M., MIELKE)

The heat flow is the gradient flow of the entropy w.r.t. \mathcal{W} .

Why the logarithmic mean?

• \mathcal{W} defines a (Riemannian) metric on $\mathcal{P}(\mathcal{X})$.

Discrete JKO-Theorem (M., MIELKE)

The heat flow is the gradient flow of the entropy w.r.t. \mathcal{W} .

Why the logarithmic mean?

• Represent heat equation as continuity equation:

$$\partial_t \rho = \Delta \rho \quad \iff \quad \left\{ \begin{array}{l} \partial_t \rho + \operatorname{div}(\rho \Psi) = 0\\ \Psi = -\nabla \log \rho \end{array} \right.$$

• \mathcal{W} defines a (Riemannian) metric on $\mathcal{P}(\mathcal{X})$.

Discrete JKO-Theorem (M., MIELKE)

The heat flow is the gradient flow of the entropy w.r.t. \mathcal{W} .

Why the logarithmic mean?

• Represent heat equation as continuity equation:

$$\partial_t \rho = \Delta \rho \quad \iff \quad \left\{ \begin{array}{l} \partial_t \rho + \operatorname{div}(\rho \Psi) = 0\\ \Psi = -\nabla \log \rho \end{array} \right.$$

• Log-mean compensates for the lack of discrete chain rule:

$$\hat{\rho}(x,y) = \int_0^1 \rho(x)^{1-\alpha} \rho(y)^{\alpha} \,\mathrm{d}\alpha = \frac{\rho(x) - \rho(y)}{\log \rho(x) - \log \rho(y)}$$

Starting point for a notion of discrete Ricci curvature (with Erbar)

Is there a JKO theorem for dissipative quantum systems?

Dynamics of open quantum systems

Dynamics of open quantum systems

• Let \mathfrak{H} be a (finite-dimensional) Hilbert space

Dynamics of open quantum systems

- Let \mathfrak{H} be a (finite-dimensional) Hilbert space
- Let $\mathfrak{P}(\mathfrak{H}) = \{ \rho \in B(\mathfrak{H}) : \rho = \rho^* \ge 0 , \operatorname{Tr}[\rho] = 1 \}$ be the set of density matrices

Dynamics of open quantum systems

- Let \mathfrak{H} be a (finite-dimensional) Hilbert space
- Let $\mathfrak{P}(\mathfrak{H}) = \{\rho \in B(\mathfrak{H}) : \rho = \rho^* \ge 0, \operatorname{Tr}[\rho] = 1\}$ be the set of density matrices
- Let $\mathcal{P}_t^{\dagger} = e^{t\mathcal{L}^{\dagger}}$ be a TPCP semigroup acting on $\mathfrak{P}(\mathfrak{H})$, i.e.,
 - \mathcal{P}_t^{\dagger} is trace-preserving, i.e., $\text{Tr}[\mathcal{P}_t^{\dagger}\rho] = \text{Tr}[\rho]$ for all $t \ge 0$
 - \mathcal{P}_t^{\dagger} is completely positive, i.e., $\mathcal{P}_t^{\dagger} \otimes I_{\mathcal{M}^n}$ preserves positivity $\forall n$

Dynamics of open quantum systems

- Let \mathfrak{H} be a (finite-dimensional) Hilbert space
- Let $\mathfrak{P}(\mathfrak{H}) = \{\rho \in B(\mathfrak{H}) : \rho = \rho^* \ge 0, \operatorname{Tr}[\rho] = 1\}$ be the set of density matrices
- Let $\mathcal{P}_t^{\dagger} = e^{t\mathcal{L}^{\dagger}}$ be a TPCP semigroup acting on $\mathfrak{P}(\mathfrak{H})$, i.e.,
 - \mathcal{P}_t^\dagger is trace-preserving, i.e., ${\sf Tr}[\mathcal{P}_t^\dagger
 ho] = {\sf Tr}[
 ho]$ for all $t \geq 0$
 - \mathcal{P}_t^{\dagger} is completely positive, i.e., $\mathcal{P}_t^{\dagger} \otimes I_{\mathcal{M}^n}$ preserves positivity $\forall n$
- Then, \mathcal{L}^{\dagger} can be written in Lindblad form

$$\mathcal{L}^{\dagger}\rho = -i[H,\rho] + \sum_{j} \left[V_{j},\rho V_{j}^{*}\right] + \left[V_{j}\rho, V_{j}^{*}\right],$$

where the Hamiltonian H is self-adjoint, and $V_j \in B(\mathfrak{H})$. [GORINI/KOSSAKOWSKI/SUDARSHAN, LINDBLAD 1976]

• General form of completely positive trace preserving Markovian dynamics:

$$\partial_t
ho = \mathcal{L}^\dagger
ho$$
 (Lindblad equation)

where $\mathcal{L}^{\dagger} \rho = -i[H, \rho] + \sum_{j} [V_j, \rho V_j^*] + [V_j \rho, V_j^*]$.

• General form of completely positive trace preserving Markovian dynamics:

$$\partial_t
ho = \mathcal{L}^\dagger
ho$$
 (Lindblad equation)

where $\mathcal{L}^{\dagger}\rho = -i[H,\rho] + \sum_{j} [V_{j},\rho V_{j}^{*}] + [V_{j}\rho,V_{j}^{*}]$.

• Assume that $\sigma \in \mathfrak{H}$ is a stationary state, i.e., $\mathcal{L}^{\dagger}\sigma = 0$.

• General form of completely positive trace preserving Markovian dynamics:

 $\partial_t \rho = \mathcal{L}^{\dagger} \rho$ (Lindblad equation)

where $\mathcal{L}^{\dagger} \rho = -i[H, \rho] + \sum_{j} [V_{j}, \rho V_{j}^{*}] + [V_{j}\rho, V_{j}^{*}]$.

- Assume that $\sigma \in \mathfrak{H}$ is a stationary state, i.e., $\mathcal{L}^{\dagger}\sigma = \mathbf{0}$.
- Let Ent(ρ|σ) = Tr[ρ(log ρ − log σ)] be the quantum relative entropy.

• General form of completely positive trace preserving Markovian dynamics:

 $\partial_t \rho = \mathcal{L}^{\dagger} \rho$ (Lindblad equation)

where $\mathcal{L}^{\dagger} \rho = -i[H, \rho] + \sum_{j} [V_j, \rho V_j^*] + [V_j \rho, V_j^*]$.

- Assume that $\sigma \in \mathfrak{H}$ is a stationary state, i.e., $\mathcal{L}^{\dagger}\sigma = \mathbf{0}$.
- Let Ent(ρ|σ) = Tr[ρ(log ρ − log σ)] be the quantum relative entropy.
- [SPOHN '78] Along the Lindblad equation, $t \mapsto \text{Ent}(\rho_t | \sigma)$ decreases.

• General form of completely positive trace preserving Markovian dynamics:

 $\partial_t
ho = \mathcal{L}^\dagger
ho$ (Lindblad equation)

where $\mathcal{L}^{\dagger}\rho = -i[H,\rho] + \sum_{j} [V_{j},\rho V_{j}^{*}] + [V_{j}\rho,V_{j}^{*}]$.

- Assume that $\sigma \in \mathfrak{H}$ is a stationary state, i.e., $\mathcal{L}^{\dagger}\sigma = \mathbf{0}$.
- Let $\operatorname{Ent}(\rho|\sigma) = \operatorname{Tr}[\rho(\log \rho \log \sigma)]$ be the quantum relative entropy.
- [SPOHN '78] Along the Lindblad equation, $t \mapsto \text{Ent}(\rho_t | \sigma)$ decreases.

Question

Can we formulate the Lindblad equation $\partial_t \rho = \mathcal{L}^{\dagger} \rho$ as gradient flow of the relative entropy?

• Let a be an operator satisfying $[a, a^*] = I$

- Let a be an operator satisfying $[a, a^*] = I$
- Concrete realisation: $\mathfrak{H} = L^2(\mathbf{R}, \gamma)$, γ Gaussian measure,

$$a = \partial_x$$
, $a^* = x - \partial_x$

- Let a be an operator satisfying $[a, a^*] = I$
- Concrete realisation: $\mathfrak{H} = L^2(\mathbf{R}, \gamma)$, γ Gaussian measure,

$$a=\partial_x, \quad a^*=x-\partial_x$$

• For $\beta > 0$, consider the quantum OU-operator

$$\mathcal{L}_{\beta}^{\dagger}\rho = \frac{1}{2}e^{\beta/2}\Big([a,\rho a^*] + [a\rho,a^*]\Big) + \frac{1}{2}e^{-\beta/2}\Big([a^*,\rho a] + [a^*\rho,a]\Big)$$

- Let a be an operator satisfying $[a, a^*] = I$
- Concrete realisation: $\mathfrak{H} = L^2(\mathbf{R}, \gamma)$, γ Gaussian measure, $\mathbf{a} = \partial_{\mathbf{x}}, \quad \mathbf{a}^* = \mathbf{x} - \partial_{\mathbf{x}}$
- For $\beta > 0$, consider the quantum OU-operator

$$\mathcal{L}_{\beta}^{\dagger}\rho = \frac{1}{2}e^{\beta/2}\Big([\mathbf{a},\rho\mathbf{a}^*] + [\mathbf{a}\rho,\mathbf{a}^*]\Big) + \frac{1}{2}e^{-\beta/2}\Big([\mathbf{a}^*,\rho\mathbf{a}] + [\mathbf{a}^*\rho,\mathbf{a}]\Big)$$

• \exists ! stationary state: $\sigma_{\beta} = Z^{-1}e^{-\beta H}$, where $H = a^*a = \partial_x^2 - x\partial_x$ is the classical OU-operator

 $\begin{array}{ll} \mbox{Conjecture:} & [{\rm Huber/K\"onig/Vershynna '16}] \\ & \mbox{Ent}(P_t^{\dagger}\rho|\sigma_{\beta}) \leq e^{-2\lambda_{\beta}t}\,\mbox{Ent}(\rho|\sigma_{\beta}) & \mbox{where} & \lambda_{\beta} = \sinh(\beta/2) \;. \end{array}$

• Let $(\mathcal{P}_t^{\dagger})$ be a TPCP semigroup on $B(\mathfrak{H})$.

- Let $(\mathcal{P}_t^{\dagger})$ be a TPCP semigroup on $B(\mathfrak{H})$.
- Let \mathcal{P}_t be its adjoint w.r.t. the scalar product $\langle A, B \rangle = \operatorname{Tr}[A^*B]$ on $B(\mathfrak{H})$.

- Let $(\mathcal{P}_t^{\dagger})$ be a TPCP semigroup on $B(\mathfrak{H})$.
- Let \mathcal{P}_t be its adjoint w.r.t. the scalar product $\langle A, B \rangle = \text{Tr}[A^*B]$ on $B(\mathfrak{H})$.
- We say that a density operator σ satisfies detailed balance if P_t is self-adjoint w.r.t. (A, B)_σ := Tr[σA*B].

- Let $(\mathcal{P}_t^{\dagger})$ be a TPCP semigroup on $B(\mathfrak{H})$.
- Let \mathcal{P}_t be its adjoint w.r.t. the scalar product $\langle A, B \rangle = \text{Tr}[A^*B]$ on $B(\mathfrak{H})$.
- We say that a density operator σ satisfies detailed balance if P_t is self-adjoint w.r.t. (A, B)_σ := Tr[σA*B].

Structure of Lindblad operators with detailed balance [ALICKI '76] If σ satisfies detailed balance for (P_t), then

$$\mathcal{L}^{\dagger} = \sum_{j} e^{\omega_{j}/2} \mathcal{L}_{j}^{\dagger}$$
, $\mathcal{L}_{j}^{\dagger} \rho = [V_{j}, \rho V_{j}^{*}] + [V_{j} \rho, V_{j}^{*}]$

where $\{V_j\}_j = \{V_j^*\}_j$ and $[V_j,\log\sigma] = -\omega_j V_j$ for some $\omega_j \in \mathbf{R}$.
• Can we formulate the Lindblad equation $\partial_t \rho = \mathcal{L}^{\dagger} \rho$ as gradient flow of the relative entropy?

- Can we formulate the Lindblad equation $\partial_t \rho = \mathcal{L}^{\dagger} \rho$ as gradient flow of the relative entropy?
- Assume first: $\sigma = I$. Then: $\mathcal{L} = \mathcal{L}^{\dagger}$.

- Can we formulate the Lindblad equation $\partial_t \rho = \mathcal{L}^{\dagger} \rho$ as gradient flow of the relative entropy?
- Assume first: $\sigma = I$. Then: $\mathcal{L} = \mathcal{L}^{\dagger}$.
- Write $\partial_j A = [V_j, A]$. Then \mathcal{L} has the div-form representation

$$\mathcal{L} \mathcal{A} = -\sum_j \partial_j^\dagger \partial_j \mathcal{A}$$

- Can we formulate the Lindblad equation $\partial_t \rho = \mathcal{L}^{\dagger} \rho$ as gradient flow of the relative entropy?
- Assume first: $\sigma = I$. Then: $\mathcal{L} = \mathcal{L}^{\dagger}$.
- Write $\partial_j A = [V_j, A]$. Then \mathcal{L} has the div-form representation

$$\mathcal{L} \mathcal{A} = -\sum_{j} \partial_{j}^{\dagger} \partial_{j} \mathcal{A}$$

• Ansatz: define a distance \mathcal{W} on $\mathfrak{P}(\mathfrak{H})$ by $\mathcal{W}(\rho_0, \rho_1)^2 = \inf_{\rho, A} \left\{ \int_0^1 \sum_j \operatorname{Tr}[(\partial_j A)^* \rho \bullet \partial_j A] \, \mathrm{d}t \right\}$ s.t. $\partial_t \rho + \sum_j \partial_j^{\dagger}(\rho \bullet \partial_j A) = 0, \quad \rho : \rho_0 \rightsquigarrow \rho_1 .$

- Can we formulate the Lindblad equation $\partial_t \rho = \mathcal{L}^{\dagger} \rho$ as gradient flow of the relative entropy?
- Assume first: $\sigma = I$. Then: $\mathcal{L} = \mathcal{L}^{\dagger}$.
- Write $\partial_j A = [V_j, A]$. Then \mathcal{L} has the div-form representation

$$\mathcal{L} \mathcal{A} = -\sum_{j} \partial_{j}^{\dagger} \partial_{j} \mathcal{A}$$

- Ansatz: define a distance \mathcal{W} on $\mathfrak{P}(\mathfrak{H})$ by $\mathcal{W}(\rho_0, \rho_1)^2 = \inf_{\rho, A} \left\{ \int_0^1 \sum_j \operatorname{Tr}[(\partial_j A)^* \rho \bullet \partial_j A] dt \right\}$ s.t. $\partial_t \rho + \sum_j \partial_j^{\dagger}(\rho \bullet \partial_j A) = 0, \quad \rho : \rho_0 \rightsquigarrow \rho_1.$
- How to define the product

 ?
 Need: non-commutative version of the classical chain rule

$$abla
ho =
ho \,
abla \log
ho$$
 ?

Is there a non-commutative chain rule " $\partial_j \rho = \rho \bullet \partial_j \log \rho$ "?

Is there a non-commutative chain rule " $\partial_j \rho = \rho \bullet \partial_j \log \rho$ "?

• Recall that $\partial_j A = [V_j, A]$

Is there a non-commutative chain rule " $\partial_j \rho = \rho \bullet \partial_j \log \rho$ "?

- Recall that $\partial_j A = [V_j, A]$
- Observe: $\partial_j(AB) = (\partial_j A)B + A \partial_j B$

Is there a non-commutative chain rule " $\partial_j \rho = \rho \bullet \partial_j \log \rho$ "?

- Recall that $\partial_j A = [V_j, A]$
- Observe: $\partial_j(AB) = (\partial_j A)B + A \partial_j B$
- Consequently:

$$\partial_j(A^n) = \sum_{k=0}^{n-1} A^k (\partial_j A) A^{n-k-1}$$

Is there a non-commutative chain rule " $\partial_j \rho = \rho \bullet \partial_j \log \rho$ "?

- Recall that $\partial_j A = [V_j, A]$
- Observe: $\partial_j(AB) = (\partial_j A)B + A \partial_j B$
- Consequently:

$$\partial_j(A^n) = \sum_{k=0}^{n-1} A^k (\partial_j A) A^{n-k-1}$$

• Set $\rho = A^{1/n}$. Then:

$$\partial_j \rho = \sum_{k=0}^{n-1} \rho^{k/n} (\partial_j \rho^{1/n}) \rho^{1-(k+1)/n}$$

Is there a non-commutative chain rule " $\partial_j \rho = \rho \bullet \partial_j \log \rho$ "?

- Recall that $\partial_j A = [V_j, A]$
- Observe: $\partial_j(AB) = (\partial_j A)B + A \partial_j B$
- Consequently:

$$\partial_j(A^n) = \sum_{k=0}^{n-1} A^k (\partial_j A) A^{n-k-1}$$

• Set $\rho = A^{1/n}$. Then:

$$\partial_j \rho = \sum_{k=0}^{n-1} \rho^{k/n} (\partial_j \rho^{1/n}) \rho^{1-(k+1)/n}$$

$$n \to \infty$$
: $\partial_j \rho = \int_0^1 \rho^s (\partial_j \log \rho) \rho^{1-s} \, \mathrm{d}s$

Quantum JKO

Quantum JKO-Theorem I (CARLEN-M., MIELKE 2014)

Let the TPCP semigroup $\mathcal{P}_t^{\dagger} = e^{t\mathcal{L}^{\dagger}}$ satisfy det. balance w.r.t. *I*. Then, the Lindblad equation $\partial_t \rho = \mathcal{L}^{\dagger} \rho$ is the gradient flow equation for the von Neumann entropy $\operatorname{Ent}(\rho) = \operatorname{Tr}[\rho \log \rho]$ w.r.t \mathcal{W} .

Quantum JKO

Quantum JKO-Theorem I (CARLEN-M., MIELKE 2014)

Let the TPCP semigroup $\mathcal{P}_t^{\dagger} = e^{t\mathcal{L}^{\dagger}}$ satisfy det. balance w.r.t. *I*. Then, the Lindblad equation $\partial_t \rho = \mathcal{L}^{\dagger} \rho$ is the gradient flow equation for the von Neumann entropy $\operatorname{Ent}(\rho) = \operatorname{Tr}[\rho \log \rho]$ w.r.t \mathcal{W} .

 ${\mathcal W}$ is defined by the non-commutative Benamou-Brenier formula:

$$\mathcal{W}^{2}(\rho_{0},\rho_{1}) = \inf_{\rho,A} \left\{ \int_{0}^{1} \sum_{j} \operatorname{Tr}[(\partial_{j}A)^{*}\rho \bullet \partial_{j}A] \, \mathrm{d}t : \\ \partial_{t}\rho + \sum_{j} \partial_{j}^{\dagger}(\rho \bullet \partial_{j}A) = 0, \quad \rho : \rho_{0} \rightsquigarrow \rho_{1} \right\}$$

where $\rho \bullet B := \int_0^1 \rho^s B \rho^{1-s} ds$.

Quantum JKO

Quantum JKO-Theorem I (CARLEN-M., MIELKE 2014)

Let the TPCP semigroup $\mathcal{P}_t^{\dagger} = e^{t\mathcal{L}^{\dagger}}$ satisfy det. balance w.r.t. *I*. Then, the Lindblad equation $\partial_t \rho = \mathcal{L}^{\dagger} \rho$ is the gradient flow equation for the von Neumann entropy $\operatorname{Ent}(\rho) = \operatorname{Tr}[\rho \log \rho]$ w.r.t \mathcal{W} .

 ${\mathcal W}$ is defined by the non-commutative Benamou-Brenier formula:

$$\mathcal{W}^{2}(\rho_{0},\rho_{1}) = \inf_{\rho,A} \left\{ \int_{0}^{1} \sum_{j} \operatorname{Tr}[(\partial_{j}A)^{*}\rho \bullet \partial_{j}A] \, \mathrm{d}t : \\ \partial_{t}\rho + \sum_{j} \partial_{j}^{\dagger}(\rho \bullet \partial_{j}A) = 0, \quad \rho : \rho_{0} \rightsquigarrow \rho_{1} \right\}$$

where $\rho \bullet B := \int_0^1 \rho^s B \rho^{1-s} ds$.

• Let \mathcal{P}_t^{\dagger} be a CPTP-semigroup satisfying σ -DBC.

- Let \mathcal{P}_t^{\dagger} be a CPTP-semigroup satisfying σ -DBC.
- Is there a non-commutative chain rule of the form $\sigma \nabla(\rho/\sigma) = \rho \nabla(\log \rho \log \sigma)$?

- Let \mathcal{P}_t^{\dagger} be a CPTP-semigroup satisfying σ -DBC.
- Is there a non-commutative chain rule of the form $\sigma \nabla(\rho/\sigma) = \rho \nabla(\log \rho \log \sigma)$?
- We have

$$\sigma^{1/2}\partial_j \big(\sigma^{-1/2}\rho\sigma^{-1/2}\big)\sigma^{1/2} = \rho \bullet_j \big(\partial_j (\log \rho - \log \sigma)\big) \ ,$$

- Let \mathcal{P}_t^{\dagger} be a CPTP-semigroup satisfying σ -DBC.
- Is there a non-commutative chain rule of the form $\sigma \nabla(\rho/\sigma) = \rho \nabla(\log \rho \log \sigma)$?
- We have

$$\sigma^{1/2}\partial_j \big(\sigma^{-1/2}\rho\sigma^{-1/2}\big)\sigma^{1/2} = \rho \bullet_j \big(\partial_j (\log \rho - \log \sigma)\big) \ ,$$

where

$$\rho \bullet_j A = \int_0^1 \left(e^{-\omega_j \beta/2} \rho \right)^{1-s} A \left(e^{\omega_j \beta/2} \rho \right)^s \mathrm{d}s$$

- Let \mathcal{P}_t^{\dagger} be a CPTP-semigroup satisfying σ -DBC.
- Is there a non-commutative chain rule of the form $\sigma \nabla(\rho/\sigma) = \rho \nabla(\log \rho \log \sigma)$?
- We have

$$\sigma^{1/2}\partial_j (\sigma^{-1/2}\rho\sigma^{-1/2})\sigma^{1/2} = \rho \bullet_j (\partial_j (\log \rho - \log \sigma)) ,$$

where

$$\rho \bullet_j A = \int_0^1 \left(e^{-\omega_j \beta/2} \rho \right)^{1-s} A \left(e^{\omega_j \beta/2} \rho \right)^s \mathrm{d}s$$

Quantum JKO-Theorem II (CARLEN-M. , MIELKE-MITTNENZWEIG 2016) Assume that $\mathcal{P}_t^{\dagger} = e^{t\mathcal{L}^{\dagger}}$ satisfies detailed balance w.r.t. σ .

- Let \mathcal{P}_t^{\dagger} be a CPTP-semigroup satisfying σ -DBC.
- Is there a non-commutative chain rule of the form $\sigma \nabla(\rho/\sigma) = \rho \nabla(\log \rho \log \sigma)$?
- We have

$$\sigma^{1/2}\partial_j (\sigma^{-1/2}\rho\sigma^{-1/2})\sigma^{1/2} = \rho \bullet_j (\partial_j (\log \rho - \log \sigma)) ,$$

where

$$\rho \bullet_j A = \int_0^1 \left(e^{-\omega_j \beta/2} \rho \right)^{1-s} A \left(e^{\omega_j \beta/2} \rho \right)^s \mathrm{d}s$$

Quantum JKO-Theorem II (CARLEN-M., MIELKE-MITTNENZWEIG 2016) Assume that $\mathcal{P}_t^{\dagger} = e^{t\mathcal{L}^{\dagger}}$ satisfies detailed balance w.r.t. σ . Then, the Lindblad equation $\partial_t \rho = \mathcal{L}^{\dagger} \rho$ is the gradient flow equation for the quantum relative entropy $\text{Ent}(\cdot | \sigma)$ w.r.t the metric \mathcal{W} .

• How to prove geod. convexity of the entropy in $(\mathscr{P}(\mathbf{R}^n), W_2)$?

- How to prove geod. convexity of the entropy in $(\mathscr{P}(\mathbf{R}^n), W_2)$?
- Suffices: $\frac{1}{2t}[W_2^2(\nu, \mathcal{P}_t \rho) W_2^2(\nu, \rho)] \leq \operatorname{Ent}(\nu) \operatorname{Ent}(\mathcal{P}_t \rho)$

- How to prove geod. convexity of the entropy in $(\mathscr{P}(\mathbf{R}^n), W_2)$?
- Suffices: $\frac{1}{2t}[W_2^2(\nu, \mathcal{P}_t \rho) W_2^2(\nu, \rho)] \leq \operatorname{Ent}(\nu) \operatorname{Ent}(\mathcal{P}_t \rho)$
- Take a geodesic from $\rho_0 = \nu$ to $\rho_1 = \rho$: $\partial_s \rho_s + \nabla \cdot V_s = 0$.

- How to prove geod. convexity of the entropy in (𝒫(ℝⁿ), 𝒫₂)?
- Suffices: $\frac{1}{2t}[W_2^2(\nu, \mathcal{P}_t \rho) W_2^2(\nu, \rho)] \leq \operatorname{Ent}(\nu) \operatorname{Ent}(\mathcal{P}_t \rho)$
- Take a geodesic from ρ₀ = ν to ρ₁ = ρ: ∂_sρ_s + ∇ · V_s = 0.
- Set $\rho_s^t = \mathcal{P}_{st}\rho_s$. Then: $\rho_0^t = \nu, \rho_1^t = \mathcal{P}_t\rho$, $\partial_s\rho_s^t + \nabla \cdot V_s^t = 0$, where

$$V_s^t = P_{st}V_s - t
abla
ho_s^t$$
 .

- How to prove geod. convexity of the entropy in (𝒫(ℝⁿ), W₂)?
- Suffices: $\frac{1}{2t}[W_2^2(\nu, \mathcal{P}_t \rho) W_2^2(\nu, \rho)] \leq \operatorname{Ent}(\nu) \operatorname{Ent}(\mathcal{P}_t \rho)$
- Take a geodesic from ρ₀ = ν to ρ₁ = ρ: ∂_sρ_s + ∇ · V_s = 0.
- Set $\rho_s^t = \mathcal{P}_{st}\rho_s$. Then: $\rho_0^t = \nu, \rho_1^t = \mathcal{P}_t\rho$, $\partial_s\rho_s^t + \nabla \cdot V_s^t = 0$, where

$$V_s^t = P_{st}V_s - t
abla
ho_s^t$$
 .

We obtain

$$\begin{split} W_2^2(\nu, \mathcal{P}_t \rho) &\leq \int_0^1 \int_{\mathbf{R}^n} \frac{|V_s^t|^2}{\rho_s^t} \, \mathrm{d}x \, \mathrm{d}s \\ &= \int_0^1 \int_{\mathbf{R}^n} \left[\frac{|\mathcal{P}_{st} V_s|^2}{\mathcal{P}_{st} \rho_s} - 2t \frac{V_s^t \cdot \nabla \rho_s^t}{\rho_s^t} - t^2 \frac{|\nabla \rho_s^t|^2}{\rho_s^t} \right] \, \mathrm{d}x \, \mathrm{d}s \\ &\leq \int_0^1 \int_{\mathbf{R}^n} \frac{|V_s|^2}{\rho_s} \, \mathrm{d}x \, \mathrm{d}s - 2t \int_0^1 \partial_s \operatorname{Ent}(\rho_s^t) \, \mathrm{d}s \\ &= W_2^2(\nu, \rho) - 2t \Big(\operatorname{Ent}(\mathcal{P}_t \rho) - \operatorname{Ent}(\nu) \Big) \end{split}$$

Key ingredients of the proof:

Key ingredients of the proof:

• Intertwining: $\partial_j \circ \mathcal{P}_t = \mathcal{P}_t \circ \partial_j$

Key ingredients of the proof:

- Intertwining: $\partial_j \circ \mathcal{P}_t = \mathcal{P}_t \circ \partial_j$
- Convexity of the function $\mathbf{R}_+ \times \mathbf{R}^n \ni (r, \mathbf{a}) \mapsto \frac{|\mathbf{a}|^2}{r}$

Key ingredients of the proof:

- Intertwining: $\partial_j \circ \mathcal{P}_t = \mathcal{P}_t \circ \partial_j$
- Convexity of the function $\mathbf{R}_+ \times \mathbf{R}^n \ni (r, a) \mapsto \frac{|a|^2}{r}$

Non-commutative analogues for quantum OU:

Key ingredients of the proof:

- Intertwining: $\partial_j \circ \mathcal{P}_t = \mathcal{P}_t \circ \partial_j$
- Convexity of the function $\mathbf{R}_+ \times \mathbf{R}^n \ni (r, a) \mapsto rac{|a|^2}{r}$

Non-commutative analogues for quantum OU:

•
$$\partial_j \circ \mathcal{P}_t = e^{-\lambda_\beta t} \mathcal{P}_t \circ \partial_j$$
 where $\lambda_\beta = \sinh(\beta/2)$

Key ingredients of the proof:

- Intertwining: $\partial_j \circ \mathcal{P}_t = \mathcal{P}_t \circ \partial_j$
- Convexity of the function $\mathbf{R}_+ imes \mathbf{R}^n
 i (r, a) \mapsto rac{|a|^2}{r}$

Non-commutative analogues for quantum OU:

•
$$\partial_j \circ \mathcal{P}_t = e^{-\lambda_\beta t} \mathcal{P}_t \circ \partial_j$$
 where $\lambda_\beta = \sinh(\beta/2)$
• $(R, A) \mapsto \operatorname{Tr}\left[\int_0^\infty (tI + e^{-\omega/2}R)^{-1}A^*(tI + e^{\omega/2}R)^{-1}A \,\mathrm{d}t\right]$
is jointly convex on $\mathcal{M}_n^+ \times \mathcal{M}_n$ for all $\omega \in \mathbf{R}$

Key ingredients of the proof:

- Intertwining: $\partial_j \circ \mathcal{P}_t = \mathcal{P}_t \circ \partial_j$
- Convexity of the function $\mathbf{R}_+ imes \mathbf{R}^n
 i (r, a) \mapsto rac{|a|^2}{r}$

Non-commutative analogues for quantum OU:

•
$$\partial_j \circ \mathcal{P}_t = e^{-\lambda_\beta t} \mathcal{P}_t \circ \partial_j$$
 where $\lambda_\beta = \sinh(\beta/2)$
• $(R, A) \mapsto \operatorname{Tr}\left[\int_0^\infty (tI + e^{-\omega/2}R)^{-1}A^*(tI + e^{\omega/2}R)^{-1}A \,\mathrm{d}t\right]$
is jointly convex on $\mathcal{M}_n^+ \times \mathcal{M}_n$ for all $\omega \in \mathbf{R}$

Theorem [CARLEN-M. 2016]

Let $\beta > 0$ and let \mathcal{P}_t be the quantum OU semigroup.

Key ingredients of the proof:

- Intertwining: $\partial_j \circ \mathcal{P}_t = \mathcal{P}_t \circ \partial_j$
- Convexity of the function $\mathbf{R}_+ imes \mathbf{R}^n
 i (r, a) \mapsto rac{|a|^2}{r}$

Non-commutative analogues for quantum OU:

•
$$\partial_j \circ \mathcal{P}_t = e^{-\lambda_\beta t} \mathcal{P}_t \circ \partial_j$$
 where $\lambda_\beta = \sinh(\beta/2)$
• $(R, A) \mapsto \operatorname{Tr} \left[\int_0^\infty (tI + e^{-\omega/2}R)^{-1} A^* (tI + e^{\omega/2}R)^{-1} A \, \mathrm{d}t \right]$
is jointly convex on $\mathcal{M}_n^+ \times \mathcal{M}_n$ for all $\omega \in \mathbf{R}$

Theorem [CARLEN-M. 2016]

Let $\beta > 0$ and let \mathcal{P}_t be the quantum OU semigroup. Then:

• The relative entropy $Ent(\cdot | \sigma_{\beta})$ is geodesically λ_{β} -convex.
Geodesic convexity of the quantum entropy

Key ingredients of the proof:

- Intertwining: $\partial_j \circ \mathcal{P}_t = \mathcal{P}_t \circ \partial_j$
- Convexity of the function $\mathbf{R}_+ imes \mathbf{R}^n
 i (r, a) \mapsto rac{|a|^2}{r}$

Non-commutative analogues for quantum OU:

•
$$\partial_j \circ \mathcal{P}_t = e^{-\lambda_\beta t} \mathcal{P}_t \circ \partial_j$$
 where $\lambda_\beta = \sinh(\beta/2)$
• $(R, A) \mapsto \operatorname{Tr} \left[\int_0^\infty (tI + e^{-\omega/2}R)^{-1} A^* (tI + e^{\omega/2}R)^{-1} A \, \mathrm{d}t \right]$

is jointly convex on $\mathcal{M}_n^+ \times \mathcal{M}_n$ for all $\omega \in \mathbf{R}$

Theorem [CARLEN-M. 2016]

Let $\beta > 0$ and let \mathcal{P}_t be the quantum OU semigroup. Then:

- The relative entropy $Ent(\cdot | \sigma_{\beta})$ is geodesically λ_{β} -convex.
- Consequently, $\mathsf{Ent}(\mathcal{P}_t^\dagger
 ho | \sigma) \leq e^{-2\lambda_eta t} \, \mathsf{Ent}(
 ho | \sigma)$

Thank you!