One-norm spectrum of a lattice

Emilio Lauret
Humboldt-Universtität zu Berlin, Germany
(permanent affiliation: Universidad Nacional de Córdoba, Argentina)

Analysis and geometry on graphs and manifolds, August 3rd 2017, Potsdam, Germany.

Notation

M a compact connected Riemannian manifold without boundary.
$\Delta: C^{\infty}(M) \rightarrow C^{\infty}(M)$ the Laplace-Beltrami operator.
$\operatorname{Spec}(M): \lambda$ such that there is $f \in C^{\infty}(M)$ such that $\Delta f=\lambda f$;

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} \rightarrow+\infty
$$

in particular the multiplicity of an eigenvalue λ, $\operatorname{dim}\left\{f \in C^{\infty}(M): \Delta f=\lambda f\right\}$, is finite.

Notation

M a compact connected Riemannian manifold without boundary.
$\Delta: C^{\infty}(M) \rightarrow C^{\infty}(M)$ the Laplace-Beltrami operator.
$\operatorname{Spec}(M): \lambda$ such that there is $f \in C^{\infty}(M)$ such that $\Delta f=\lambda f$;

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} \rightarrow+\infty
$$

in particular the multiplicity of an eigenvalue λ, $\operatorname{dim}\left\{f \in C^{\infty}(M): \Delta f=\lambda f\right\}$, is finite.

Definition

M and M^{\prime} are said to be isospectral if $\operatorname{Spec}(M)=\operatorname{Spec}\left(M^{\prime}\right)$.

Notation

M a compact connected Riemannian manifold without boundary.
$\Delta: C^{\infty}(M) \rightarrow C^{\infty}(M)$ the Laplace-Beltrami operator.
$\operatorname{Spec}(M): \lambda$ such that there is $f \in C^{\infty}(M)$ such that $\Delta f=\lambda f$;

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} \rightarrow+\infty
$$

in particular the multiplicity of an eigenvalue λ, $\operatorname{dim}\left\{f \in C^{\infty}(M): \Delta f=\lambda f\right\}$, is finite.

Definition

M and M^{\prime} are said to be isospectral if $\operatorname{Spec}(M)=\operatorname{Spec}\left(M^{\prime}\right)$.
One cannot hear the shape of a drum.

First isospectral example

Milnor in 1960 related (in a one-page-long article) the spectrum of a flat torus \mathbb{R}^{n} / Λ with quadratic forms.

First isospectral example

Milnor in 1960 related (in a one-page-long article) the spectrum of a flat torus \mathbb{R}^{n} / Λ with quadratic forms.
$v \in \Lambda^{*}(=$ dual lattice of $\Lambda), x \in \mathbb{R}^{n}, f_{v}(x)=e^{2 \pi i\langle v, x\rangle}$,

First isospectral example

Milnor in 1960 related (in a one-page-long article) the spectrum of a flat torus \mathbb{R}^{n} / Λ with quadratic forms.
$v \in \Lambda^{*}(=$ dual lattice of $\Lambda), x \in \mathbb{R}^{n}, f_{v}(x)=e^{2 \pi i\langle v, x\rangle}$,

$$
\Delta f_{v}=4 \pi^{2}\|v\|^{2} f_{v}
$$

First isospectral example

Milnor in 1960 related (in a one-page-long article) the spectrum of a flat torus \mathbb{R}^{n} / Λ with quadratic forms.
$v \in \Lambda^{*}(=$ dual lattice of $\Lambda), x \in \mathbb{R}^{n}, f_{v}(x)=e^{2 \pi i\langle v, x\rangle}$,

$$
\Delta f_{v}=4 \pi^{2}\|v\|^{2} f_{v} \Longrightarrow \operatorname{Spec}\left(\mathbb{R}^{n} / \Lambda\right)=\left\{\left\{4 \pi^{2}\|v\|^{2}: v \in \Lambda^{*}\right\}\right\}
$$

First isospectral example

Milnor in 1960 related (in a one-page-long article) the spectrum of a flat torus \mathbb{R}^{n} / Λ with quadratic forms.
$v \in \Lambda^{*}(=$ dual lattice of $\Lambda), x \in \mathbb{R}^{n}, f_{v}(x)=e^{2 \pi i\langle v, x\rangle}$,
$\Delta f_{v}=4 \pi^{2}\|v\|^{2} f_{v} \Longrightarrow \operatorname{Spec}\left(\mathbb{R}^{n} / \Lambda\right)=\left\{\left\{4 \pi^{2}\|v\|^{2}: v \in \Lambda^{*}\right\}\right\}$,
i.e. $\operatorname{mult}\left(4 \pi^{2} \mu\right)=\#\left\{v \in \Lambda^{*}:\|v\|^{2}=\mu\right\}$

First isospectral example

Milnor in 1960 related (in a one-page-long article) the spectrum of a flat torus \mathbb{R}^{n} / Λ with quadratic forms.
$v \in \Lambda^{*}(=$ dual lattice of $\Lambda), x \in \mathbb{R}^{n}, f_{v}(x)=e^{2 \pi i\langle v, x\rangle}$,
$\Delta f_{v}=4 \pi^{2}\|v\|^{2} f_{v} \Longrightarrow \operatorname{Spec}\left(\mathbb{R}^{n} / \Lambda\right)=\left\{\left\{4 \pi^{2}\|v\|^{2}: v \in \Lambda^{*}\right\}\right\}$,
i.e. $\operatorname{mult}\left(4 \pi^{2} \mu\right)=\#\left\{v \in \Lambda^{*}:\|v\|^{2}=\mu\right\}=$ the number of ways that one can represent μ by the quadratic form associated to the lattice Λ^{*}.

First isospectral example

Milnor in 1960 related (in a one-page-long article) the spectrum of a flat torus \mathbb{R}^{n} / Λ with quadratic forms.
$v \in \Lambda^{*}(=$ dual lattice of $\Lambda), x \in \mathbb{R}^{n}, f_{v}(x)=e^{2 \pi i\langle v, x\rangle}$,
$\Delta f_{v}=4 \pi^{2}\|v\|^{2} f_{v} \Longrightarrow \operatorname{Spec}\left(\mathbb{R}^{n} / \Lambda\right)=\left\{\left\{4 \pi^{2}\|v\|^{2}: v \in \Lambda^{*}\right\}\right\}$,
i.e. $\operatorname{mult}\left(4 \pi^{2} \mu\right)=\#\left\{v \in \Lambda^{*}:\|v\|^{2}=\mu\right\}=$ the number of ways that one can represent μ by the quadratic form associated to the lattice Λ^{*}.

Witt (1942): the quadratic forms associated to the lattices $E_{8} \oplus E_{8}$ and D_{16}^{+}represent the same numbers (with multiplicities);

First isospectral example

Milnor in 1960 related (in a one-page-long article) the spectrum of a flat torus \mathbb{R}^{n} / Λ with quadratic forms.
$v \in \Lambda^{*}(=$ dual lattice of $\Lambda), x \in \mathbb{R}^{n}, f_{v}(x)=e^{2 \pi i\langle v, x\rangle}$,
$\Delta f_{v}=4 \pi^{2}\|v\|^{2} f_{v} \Longrightarrow \operatorname{Spec}\left(\mathbb{R}^{n} / \Lambda\right)=\left\{\left\{4 \pi^{2}\|v\|^{2}: v \in \Lambda^{*}\right\}\right\}$,
i.e. $\operatorname{mult}\left(4 \pi^{2} \mu\right)=\#\left\{v \in \Lambda^{*}:\|v\|^{2}=\mu\right\}=$ the number of ways that one can represent μ by the quadratic form associated to the lattice Λ^{*}.

Witt (1942): the quadratic forms associated to the lattices $E_{8} \oplus E_{8}$ and D_{16}^{+}represent the same numbers (with multiplicities); in other words, they have the same theta functions.

First isospectral example

Milnor in 1960 related (in a one-page-long article) the spectrum of a flat torus \mathbb{R}^{n} / Λ with quadratic forms.
$v \in \Lambda^{*}(=$ dual lattice of $\Lambda), x \in \mathbb{R}^{n}, f_{v}(x)=e^{2 \pi i\langle v, x\rangle}$,
$\Delta f_{v}=4 \pi^{2}\|v\|^{2} f_{v} \Longrightarrow \operatorname{Spec}\left(\mathbb{R}^{n} / \Lambda\right)=\left\{\left\{4 \pi^{2}\|v\|^{2}: v \in \Lambda^{*}\right\}\right\}$,
i.e. $\operatorname{mult}\left(4 \pi^{2} \mu\right)=\#\left\{v \in \Lambda^{*}:\|v\|^{2}=\mu\right\}=$ the number of ways that one can represent μ by the quadratic form associated to the lattice Λ^{*}.

Witt (1942): the quadratic forms associated to the lattices $E_{8} \oplus E_{8}$ and D_{16}^{+}represent the same numbers (with multiplicities); in other words, they have the same theta functions.

Therefore $\mathbb{R}^{16} / E_{8} \oplus E_{8}$ and $\mathbb{R}^{16} / D_{16}^{+}$are isospectral.

Lens spaces

Lens spaces are spherical space forms with cyclic fundamental groups.

Lens spaces

Lens spaces are spherical space forms with cyclic fundamental groups.

Parametrization: for $q \in \mathbb{N}$ and $s_{1}, \ldots, s_{n} \in \mathbb{Z}$ satisfying $\operatorname{gcd}\left(q, s_{j}\right)=1$ for all j,

$$
L\left(q ; s_{1}, \ldots, s_{n}\right):=\langle\gamma\rangle \backslash S^{2 n-1}
$$

Lens spaces

Lens spaces are spherical space forms with cyclic fundamental groups.

Parametrization: for $q \in \mathbb{N}$ and $s_{1}, \ldots, s_{n} \in \mathbb{Z}$ satisfying $\operatorname{gcd}\left(q, s_{j}\right)=1$ for all j,

$$
\begin{gathered}
L\left(q ; s_{1}, \ldots, s_{n}\right):=\langle\gamma\rangle \backslash S^{2 n-1}, \\
\gamma=\operatorname{diag}\left(\left[\begin{array}{cc}
\cos \left(\frac{2 \pi s_{1}}{q}\right) & \sin \left(\frac{2 \pi s_{1}}{q}\right) \\
-\sin \left(\frac{2 \pi s_{1}}{q}\right) & \cos \left(\frac{2 \pi s_{1}}{q}\right)
\end{array}\right], \ldots,\left[\begin{array}{cc}
\cos \left(\frac{2 \pi s_{n}}{q}\right) & \sin \left(\frac{2 \pi s_{n}}{q}\right) \\
-\sin \left(\frac{2 \pi s_{n}}{q}\right) & \cos \left(\frac{2 \pi s_{n}}{q}\right.
\end{array}\right]\right) .
\end{gathered}
$$

Lens spaces

Lens spaces are spherical space forms with cyclic fundamental groups.

Parametrization: for $q \in \mathbb{N}$ and $s_{1}, \ldots, s_{n} \in \mathbb{Z}$ satisfying $\operatorname{gcd}\left(q, s_{j}\right)=1$ for all j,

$$
\begin{gathered}
L\left(q ; s_{1}, \ldots, s_{n}\right):=\langle\gamma\rangle \backslash S^{2 n-1}, \\
\gamma=\operatorname{diag}\left(\left[\begin{array}{cc}
\cos \left(\frac{2 \pi s_{1}}{q}\right) & \sin \left(\frac{2 \pi s_{1}}{q}\right) \\
-\sin \left(\frac{2 \pi s_{1}}{q}\right) & \cos \left(\frac{2 \pi s_{1}}{q}\right)
\end{array}\right], \ldots,\left[\begin{array}{cc}
\cos \left(\frac{2 \pi s_{n}}{q}\right) & \sin \left(\frac{2 \pi s_{n}}{q}\right) \\
-\sin \left(\frac{2 \pi s_{n}}{q}\right) & \cos \left(\frac{2 \pi s_{n}}{q}\right.
\end{array}\right]\right) .
\end{gathered}
$$

Equivalently, $L\left(q ; s_{1}, \ldots, s_{n}\right)=S^{2 n-1} / \sim$ where

$$
\left(z_{1}, \ldots, z_{n}\right) \sim\left(\xi^{s_{1}} z_{1}, \ldots, \xi^{s_{n}} z_{n}\right)
$$

for any ξ root of unity of order q.

Isospectral characterization

We associate to $L\left(q ; s_{1}, \ldots, s_{n}\right)$ the congruence lattice

$$
\mathcal{L}\left(q ; s_{1}, \ldots, s_{n}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}: a_{1} s_{1}+\cdots+a_{n} s_{n} \equiv 0 \quad(\bmod q)\right\}
$$

Isospectral characterization

We associate to $L\left(q ; s_{1}, \ldots, s_{n}\right)$ the congruence lattice
$\mathcal{L}\left(q ; s_{1}, \ldots, s_{n}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}: a_{1} s_{1}+\cdots+a_{n} s_{n} \equiv 0 \quad(\bmod q)\right\}$.

For $\mu=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$, set $\|\mu\|_{1}=\sum_{j=1}^{n}\left|a_{j}\right|$.

Isospectral characterization

We associate to $L\left(q ; s_{1}, \ldots, s_{n}\right)$ the congruence lattice
$\mathcal{L}\left(q ; s_{1}, \ldots, s_{n}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}: a_{1} s_{1}+\cdots+a_{n} s_{n} \equiv 0 \quad(\bmod q)\right\}$.

For $\mu=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$, set $\|\mu\|_{1}=\sum_{j=1}^{n}\left|a_{j}\right|$.
Definition
$\mathcal{L}, \mathcal{L}^{\prime} \subset \mathbb{Z}^{n}$ are said to be $\|\cdot\|_{1}$-isospectral if, for all $k \geq 0$,

$$
\#\left\{\mu \in \mathcal{L}:\|\mu\|_{1}=k\right\}=\#\left\{\mu \in \mathcal{L}^{\prime}:\|\mu\|_{1}=k\right\}
$$

Isospectral characterization

We associate to $L\left(q ; s_{1}, \ldots, s_{n}\right)$ the congruence lattice
$\mathcal{L}\left(q ; s_{1}, \ldots, s_{n}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}: a_{1} s_{1}+\cdots+a_{n} s_{n} \equiv 0 \quad(\bmod q)\right\}$.

For $\mu=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$, set $\|\mu\|_{1}=\sum_{j=1}^{n}\left|a_{j}\right|$.
Definition
$\mathcal{L}, \mathcal{L}^{\prime} \subset \mathbb{Z}^{n}$ are said to be $\|\cdot\|_{1}$-isospectral if, for all $k \geq 0$,

$$
\#\left\{\mu \in \mathcal{L}:\|\mu\|_{1}=k\right\}=\#\left\{\mu \in \mathcal{L}^{\prime}:\|\mu\|_{1}=k\right\}
$$

Theorem (L., Miatello, Rossetti, 2013)
The lens spaces L and L^{\prime} are isospectral if and only if their associated congruence lattices \mathcal{L} and \mathcal{L}^{\prime} are $\|\cdot\|_{1}$-isospectral.

Proof

$\operatorname{Spec}\left(S^{2 n-1}\right)$: eigenvalues $\lambda_{k}:=k(k+2 n-2)$,

Proof

$\operatorname{Spec}\left(S^{2 n-1}\right)$: eigenvalues $\lambda_{k}:=k(k+2 n-2)$, $\operatorname{mult}\left(\lambda_{k}\right)=\operatorname{dim} V_{\pi_{k}}$, where π_{k} is the irreducible representation of $\mathrm{SO}(2 n)$ with highest weight $k \varepsilon_{1}$.

Proof

$\operatorname{Spec}\left(S^{2 n-1}\right)$: eigenvalues $\lambda_{k}:=k(k+2 n-2)$, $\operatorname{mult}\left(\lambda_{k}\right)=\operatorname{dim} V_{\pi_{k}}$, where π_{k} is the irreducible representation of $\mathrm{SO}(2 n)$ with highest weight $k \varepsilon_{1}$.
$V_{\pi_{k}}=$ harmonic homogeneous polynomials of degree k.

Proof

$\operatorname{Spec}\left(S^{2 n-1}\right)$: eigenvalues $\lambda_{k}:=k(k+2 n-2)$, $\operatorname{mult}\left(\lambda_{k}\right)=\operatorname{dim} V_{\pi_{k}}$, where π_{k} is the irreducible representation of $\mathrm{SO}(2 n)$ with highest weight $k \varepsilon_{1}$.
$V_{\pi_{k}}=$ harmonic homogeneous polynomials of degree k.
$\operatorname{Spec}\left(\Gamma \backslash S^{2 n-1}\right)$: eigenvalues λ_{k}, mult $\Delta_{\Gamma}\left(\lambda_{k}\right)=\operatorname{dim} V_{\pi_{k}}^{\Gamma}$.

Proof

$\operatorname{Spec}\left(S^{2 n-1}\right)$: eigenvalues $\lambda_{k}:=k(k+2 n-2)$, $\operatorname{mult}\left(\lambda_{k}\right)=\operatorname{dim} V_{\pi_{k}}$, where π_{k} is the irreducible representation of $\mathrm{SO}(2 n)$ with highest weight $k \varepsilon_{1}$.
$V_{\pi_{k}}=$ harmonic homogeneous polynomials of degree k.
$\operatorname{Spec}\left(\Gamma \backslash S^{2 n-1}\right)$: eigenvalues λ_{k}, mult $\Delta_{\Gamma}\left(\lambda_{k}\right)=\operatorname{dim} V_{\pi_{k}}^{\Gamma}$.
$F_{L}(z)=\sum_{k \geq 0} \operatorname{dim} V_{k \varepsilon_{1}}^{\Gamma} z^{k}$

Proof

$\operatorname{Spec}\left(S^{2 n-1}\right)$: eigenvalues $\lambda_{k}:=k(k+2 n-2)$, $\operatorname{mult}\left(\lambda_{k}\right)=\operatorname{dim} V_{\pi_{k}}$, where π_{k} is the irreducible representation of $\mathrm{SO}(2 n)$ with highest weight $k \varepsilon_{1}$.
$V_{\pi_{k}}=$ harmonic homogeneous polynomials of degree k.
$\operatorname{Spec}\left(\Gamma \backslash S^{2 n-1}\right)$: eigenvalues λ_{k}, mult $\Delta_{\Gamma}\left(\lambda_{k}\right)=\operatorname{dim} V_{\pi_{k}}^{\Gamma}$.

$$
\begin{aligned}
F_{L}(z) & =\sum_{k \geq 0} \operatorname{dim} V_{k \varepsilon_{1}}^{\Gamma} z^{k}=\ldots \\
& =\left(\sum_{k \geq 0}\binom{k+n-2}{n-2} z^{2 k}\right)\left(\sum_{k \geq 0} \#\left\{\mu \in \mathcal{L}:\|\mu\|_{1}=k\right\} z^{k}\right)
\end{aligned}
$$

Proof

$\operatorname{Spec}\left(S^{2 n-1}\right)$: eigenvalues $\lambda_{k}:=k(k+2 n-2)$, $\operatorname{mult}\left(\lambda_{k}\right)=\operatorname{dim} V_{\pi_{k}}$, where π_{k} is the irreducible representation of $\mathrm{SO}(2 n)$ with highest weight $k \varepsilon_{1}$.
$V_{\pi_{k}}=$ harmonic homogeneous polynomials of degree k.
$\operatorname{Spec}\left(\Gamma \backslash S^{2 n-1}\right)$: eigenvalues λ_{k}, mult $\Delta_{\Gamma}\left(\lambda_{k}\right)=\operatorname{dim} V_{\pi_{k}}^{\Gamma}$.

$$
\begin{aligned}
F_{L}(z) & =\sum_{k \geq 0} \operatorname{dim} V_{k \varepsilon_{1}}^{\Gamma} z^{k}=\ldots \\
& =\left(\sum_{k \geq 0}\binom{k+n-2}{n-2} z^{2 k}\right)\left(\sum_{k \geq 0} \#\left\{\mu \in \mathcal{L}:\|\mu\|_{1}=k\right\} z^{k}\right) \\
& =\frac{1}{\left(1-z^{2}\right)^{n-1}} \Theta_{\mathcal{L}}(z)
\end{aligned}
$$

Proof

$\operatorname{Spec}\left(S^{2 n-1}\right)$: eigenvalues $\lambda_{k}:=k(k+2 n-2)$, $\operatorname{mult}\left(\lambda_{k}\right)=\operatorname{dim} V_{\pi_{k}}$, where π_{k} is the irreducible representation of $\mathrm{SO}(2 n)$ with highest weight $k \varepsilon_{1}$.
$V_{\pi_{k}}=$ harmonic homogeneous polynomials of degree k.
$\operatorname{Spec}\left(\Gamma \backslash S^{2 n-1}\right)$: eigenvalues λ_{k}, mult $\Delta_{\Gamma}\left(\lambda_{k}\right)=\operatorname{dim} V_{\pi_{k}}^{\Gamma}$.

$$
\begin{aligned}
F_{L}(z) & =\sum_{k \geq 0} \operatorname{dim} V_{k \varepsilon_{1}}^{\Gamma} z^{k}=\ldots \\
& =\left(\sum_{k \geq 0}\binom{k+n-2}{n-2} z^{2 k}\right)\left(\sum_{k \geq 0} \#\left\{\mu \in \mathcal{L}:\|\mu\|_{1}=k\right\} z^{k}\right) \\
& =\frac{1}{\left(1-z^{2}\right)^{n-1}} \Theta_{\mathcal{L}}(z)
\end{aligned}
$$

We conclude that $F_{L}(z)=F_{L^{\prime}}(z)$ if and only if $\Theta_{\mathcal{L}}(z)=\Theta_{\mathcal{L}^{\prime}}(z)$.

Rational expression for $F_{L}(z)$

By using Ehrhart's theory on counting integer points in polytopes, Theorem (L., 2015)
Let $L=L\left(q ; s_{1}, \ldots, s_{n}\right)$ and let \mathcal{L} be the associated congruence lattice. Then, there is a polynomial $P_{\mathcal{L}}(z)$ of degree $\leq q(n+1)$ such that

$$
\Theta_{\mathcal{L}}(z)=\frac{P_{\mathcal{L}}(z)}{\left(1-z^{q}\right)^{n+1}} \quad \Longrightarrow \quad F_{L}(z)=\frac{P_{\mathcal{L}}(z)}{\left(1-z^{2}\right)^{n-1}\left(1-z^{q}\right)^{n+1}} .
$$

Rational expression for $F_{L}(z)$

By using Ehrhart's theory on counting integer points in polytopes, Theorem (L., 2015)
Let $L=L\left(q ; s_{1}, \ldots, s_{n}\right)$ and let \mathcal{L} be the associated congruence lattice. Then, there is a polynomial $P_{\mathcal{L}}(z)$ of degree $\leq q(n+1)$ such that

$$
\Theta_{\mathcal{L}}(z)=\frac{P_{\mathcal{L}}(z)}{\left(1-z^{q}\right)^{n+1}} \quad \Longrightarrow \quad F_{L}(z)=\frac{P_{\mathcal{L}}(z)}{\left(1-z^{2}\right)^{n-1}\left(1-z^{q}\right)^{n+1}}
$$

This tell us that a finite part of the spectrum of L determines $\operatorname{Spec}(L)$ (which was already known).

Rational expression for $F_{L}(z)$

By using Ehrhart's theory on counting integer points in polytopes,

Theorem (L., 2015)

Let $L=L\left(q ; s_{1}, \ldots, s_{n}\right)$ and let \mathcal{L} be the associated congruence lattice. Then, there is a polynomial $P_{\mathcal{L}}(z)$ of degree $\leq q(n+1)$ such that

$$
\Theta_{\mathcal{L}}(z)=\frac{P_{\mathcal{L}}(z)}{\left(1-z^{q}\right)^{n+1}} \quad \Longrightarrow \quad F_{L}(z)=\frac{P_{\mathcal{L}}(z)}{\left(1-z^{2}\right)^{n-1}\left(1-z^{q}\right)^{n+1}}
$$

This tell us that a finite part of the spectrum of L determines $\operatorname{Spec}(L)$ (which was already known).

In 2016: an explicit description for $P_{\mathcal{L}}(z)$ in terms of \mathcal{L}.

Generalizations

- all-p-spectrum (2013). Joint R. Miatello and J.P. Rossetti, we also consider the Hodge-Laplace operator acting on p-forms (in place of the Laplace-Beltrami operator $\leftrightarrow p=0$) of a lens space.

Generalizations

- all-p-spectrum (2013). Joint R. Miatello and J.P. Rossetti, we also consider the Hodge-Laplace operator acting on p-forms (in place of the Laplace-Beltrami operator $\leftrightarrow p=0$) of a lens space.

Theorem (L., Miatello, Rossetti, 2013)
Two lens spaces L and L^{\prime} are p-isospectral for all p if and only if $\#\left\{\mu \in \mathcal{L}:\|\mu\|_{1}=k, Z(\mu)=\ell\right\}=\#\left\{\mu \in \mathcal{L}^{\prime}:\|\mu\|_{1}=k, Z(\mu)=\ell\right\}$ for all $k \geq 0$ and $0 \leq \ell \leq n .(Z(\mu):=$ the number of zero coordiantes of μ.)

Generalizations

- all-p-spectrum (2013). Joint R. Miatello and J.P. Rossetti, we also consider the Hodge-Laplace operator acting on p-forms (in place of the Laplace-Beltrami operator $\leftrightarrow p=0$) of a lens space.

Theorem (L., Miatello, Rossetti, 2013)
Two lens spaces L and L^{\prime} are p-isospectral for all p if and only if
$\#\left\{\mu \in \mathcal{L}:\|\mu\|_{1}=k, Z(\mu)=\ell\right\}=\#\left\{\mu \in \mathcal{L}^{\prime}:\|\mu\|_{1}=k, Z(\mu)=\ell\right\}$
for all $k \geq 0$ and $0 \leq \ell \leq n .(Z(\mu):=$ the number of zero coordiantes of μ.)
$\{L(49 ; 1,6,15), L(49 ; 1,6,20)\}$ is the first pair of p-isospectral Riemannian manifolds for all p which are not strongly isospectral

Generalizations

- all-p-spectrum (2013). Joint R. Miatello and J.P. Rossetti, we also consider the Hodge-Laplace operator acting on p-forms (in place of the Laplace-Beltrami operator $\leftrightarrow p=0$) of a lens space.

Theorem (L., Miatello, Rossetti, 2013)
Two lens spaces L and L^{\prime} are p-isospectral for all p if and only if
$\#\left\{\mu \in \mathcal{L}:\|\mu\|_{1}=k, Z(\mu)=\ell\right\}=\#\left\{\mu \in \mathcal{L}^{\prime}:\|\mu\|_{1}=k, Z(\mu)=\ell\right\}$
for all $k \geq 0$ and $0 \leq \ell \leq n .(Z(\mu):=$ the number of zero coordiantes of μ.)
$\{L(49 ; 1,6,15), L(49 ; 1,6,20)\}$ is the first pair of p-isospectral Riemannian manifolds for all p which are not strongly isospectral (isospectral w.r.t. every natural operator),

Generalizations

- all-p-spectrum (2013). Joint R. Miatello and J.P. Rossetti, we also consider the Hodge-Laplace operator acting on p-forms (in place of the Laplace-Beltrami operator $\leftrightarrow p=0$) of a lens space.

Theorem (L., Miatello, Rossetti, 2013)
Two lens spaces L and L^{\prime} are p-isospectral for all p if and only if
$\#\left\{\mu \in \mathcal{L}:\|\mu\|_{1}=k, Z(\mu)=\ell\right\}=\#\left\{\mu \in \mathcal{L}^{\prime}:\|\mu\|_{1}=k, Z(\mu)=\ell\right\}$
for all $k \geq 0$ and $0 \leq \ell \leq n .(Z(\mu):=$ the number of zero coordiantes of μ.)
$\{L(49 ; 1,6,15), L(49 ; 1,6,20)\}$ is the first pair of p-isospectral Riemannian manifolds for all p which are not strongly isospectral (isospectral w.r.t. every natural operator), in particular they are not constructed by Sunada's method.

Generalizations

- Dirac operator (2014). Joint S. Boldt we consider the Dirac operator.

Generalizations

- Dirac operator (2014). Joint S. Boldt we consider the Dirac operator. We obtained:
- Description of Dirac spectra on spin lens spaces.

Generalizations

- Dirac operator (2014). Joint S. Boldt we consider the Dirac operator. We obtained:
- Description of Dirac spectra on spin lens spaces.
- Dirac isospectral characterization.

Generalizations

- Dirac operator (2014). Joint S. Boldt we consider the Dirac operator. We obtained:
- Description of Dirac spectra on spin lens spaces.
- Dirac isospectral characterization.
- New Dirac isospectral examples.

Generalizations

- Dirac operator (2014). Joint S. Boldt we consider the Dirac operator. We obtained:
- Description of Dirac spectra on spin lens spaces.
- Dirac isospectral characterization.
- New Dirac isospectral examples.
- A sequence of finite families with increasing dimension and cardinal, and fixed fundamental group order.

Generalizations

- Dirac operator (2014). Joint S. Boldt we consider the Dirac operator. We obtained:
- Description of Dirac spectra on spin lens spaces.
- Dirac isospectral characterization.
- New Dirac isospectral examples.
- A sequence of finite families with increasing dimension and cardinal, and fixed fundamental group order.
- A sequence of 7-dimensional lens spaces with two (non-isometric) spin structures.

Generalizations

- Dirac operator (2014). Joint S. Boldt we consider the Dirac operator. We obtained:
- Description of Dirac spectra on spin lens spaces.
- Dirac isospectral characterization.
- New Dirac isospectral examples.
- A sequence of finite families with increasing dimension and cardinal, and fixed fundamental group order.
- A sequence of 7-dimensional lens spaces with two (non-isometric) spin structures.
- A sequence of pairs of 7-dimensional lens spaces.

Generalizations

- Dirac operator (2014). Joint S. Boldt we consider the Dirac operator. We obtained:
- Description of Dirac spectra on spin lens spaces.
- Dirac isospectral characterization.
- New Dirac isospectral examples.
- A sequence of finite families with increasing dimension and cardinal, and fixed fundamental group order.
- A sequence of 7-dimensional lens spaces with two (non-isometric) spin structures.
- A sequence of pairs of 7-dimensional lens spaces.
- Computational examples.

Generalizations

- Dirac operator (2014). Joint S. Boldt we consider the Dirac operator. We obtained:
- Description of Dirac spectra on spin lens spaces.
- Dirac isospectral characterization.
- New Dirac isospectral examples.
- A sequence of finite families with increasing dimension and cardinal, and fixed fundamental group order.
- A sequence of 7-dimensional lens spaces with two (non-isometric) spin structures.
- A sequence of pairs of 7-dimensional lens spaces.
- Computational examples.
- Any example above is strongly isospectral.
- Good orbifolds with cyclic fundamental group (2015). I considered spaces $\Gamma \backslash G / K$ with G / K a compact symmetric space of real rank one (in place of $G / K=S^{2 n-1}$) and Γ a cyclic subgroup of G.
- Good orbifolds with cyclic fundamental group (2015). I considered spaces $\Gamma \backslash G / K$ with G / K a compact symmetric space of real rank one (in place of $G / K=S^{2 n-1}$) and Γ a cyclic subgroup of G.
- Explicit p-spectra of lens spaces (2016). I found an explicit description of each p-spectrum of a lens spaces and the following characterization for each p_{0} :
- Good orbifolds with cyclic fundamental group (2015). I considered spaces $\Gamma \backslash G / K$ with G / K a compact symmetric space of real rank one (in place of $G / K=S^{2 n-1}$) and Γ a cyclic subgroup of G.
- Explicit p-spectra of lens spaces (2016). I found an explicit description of each p-spectrum of a lens spaces and the following characterization for each p_{0} : L and L^{\prime} are p-isospectral for all $0 \leq p \leq p_{0}$ iff

$$
\sum_{\ell=0}^{n} \ell^{h} \Theta_{\mathcal{L}}^{(\ell)}(z)=\sum_{\ell=0}^{n} \ell^{h} \Theta_{\mathcal{L}^{\prime}}^{(\ell)}(z) \quad \text { for all } 0 \leq h \leq p_{0}
$$

where $\Theta_{\mathcal{L}}^{(\ell)}:=\sum_{k \geq 0} \#\left\{\mu \in \mathcal{L}:\|\mu\|_{1}=k, Z(\mu)=\ell\right\} z^{k}$.

- Good orbifolds with cyclic fundamental group (2015). I considered spaces $\Gamma \backslash G / K$ with G / K a compact symmetric space of real rank one (in place of $G / K=S^{2 n-1}$) and Γ a cyclic subgroup of G.
- Explicit p-spectra of lens spaces (2016). I found an explicit description of each p-spectrum of a lens spaces and the following characterization for each p_{0} : L and L^{\prime} are p-isospectral for all $0 \leq p \leq p_{0}$ iff

$$
\sum_{\ell=0}^{n} \ell^{h} \Theta_{\mathcal{L}}^{(\ell)}(z)=\sum_{\ell=0}^{n} \ell^{h} \Theta_{\mathcal{L}^{\prime}}^{(\ell)}(z) \quad \text { for all } 0 \leq h \leq p_{0}
$$

where $\Theta_{\mathcal{L}}^{(\ell)}:=\sum_{k \geq 0} \#\left\{\mu \in \mathcal{L}:\|\mu\|_{1}=k, Z(\mu)=\ell\right\} z^{k}$.

- A computational study (2017). The previous description let us to make a computational study of p-isospectral lens spaces.

