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Simple example - Part I

• Line graph: Laplacian on 5 vertices, G = {e, r}, Lπ(r) = π(r)L

L =


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 , π(r) =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 .

• Reflection symmetry: Eigenfunctions are either even or odd under
reflection, [π(r)f ](x) = f (−x) = ±f (x)

σ(L) =

{
0,

1

2
(3−

√
5),

1

2
(5−

√
5),

1

2
(3 +

√
5),

1

2
(5 +

√
5)

}
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Simple example - Part I

• Isolate even functions: Modify eigenvalue equation with information of
trivial representation f (x) = f (−x)

λf (0) = [Lf ](0) = 2f (0)− f (1)− f (−1) = 2f (0)− 2f (1)

λf (1) = [Lf ](1) = 2f (1)− f (2)− f (0)

λf (2) = [Lf ](2) = f (2)− f (1)

• Matrix form: Reading off coefficients gives

λf = L̃+f , L̃+ =

 2 −2 0
−1 2 −1
0 −1 1


• Normalisation: If we choose g(0) = f (0), g(x) =

√
2f (x), x = 1, 2, then

2∑
x=0

g(x)2 =
2∑

x=−2

f (x)2 = 1
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Simple example - Part II

• Alternative viewpoint: Take a basis of even/odd vectors

Θ+ =
1√
2


0 0 1
0 1 0√
2 0 0

0 1 0
0 0 1

 , Θ− =
1√
2


0 −1
−1 0
0 0
1 0
0 1

 ,

• Conjugate with original operator: Then we have L± = Θ∗±LΘ±, i.e.

Θ∗+LΘ+ =

 2 −
√

2 0

−
√

2 2 −1
0 −1 1

 , Θ−LΘ− =

(
2 −1
−1 1

)
,

• Block diagonalisation: Z = (Θ+ Θ−), then

Z∗π(r)Z = diag(1, 1, 1,−1,−1), Z∗LZ = L+ ⊕ L−

—— 5 ——



Simple example - Part II

• Conjugate with original operator: Then we have L± = Θ∗±LΘ±, i.e.

Θ∗+LΘ+ =

 2 −
√

2 0

−
√

2 2 −1
0 −1 1

 , Θ−LΘ− =

(
2 −1
−1 1

)
,

• Unitary equivalence: Take any unitary matrix, then following also valid

Θ± 7→ Θ±U , L± 7→ U∗L±U

• The question: Given unitary invariance, for arbitrary symmetries,

How do we consistently choose Θ?

—— 6 ——



Motivations and background

• Isospectrality: [Sunada ’85, Gordon, Webb & Wolpert ’92]

Quotient graphs are isospectral if

IndG
H1

(triv) ∼= IndG
H2

(triv)

• Isospectrality in discrete graphs: [Brooks ’99, Halbeisen & Hungerbühler ’99]

260 JOURNAL OF GRAPH THEORY

mapping

f ∈ ℓ2(Vi) "→ (#Hi)
−1/2f ◦ ωi ∈ ℓ2(V )

induces an isometry of Hilbert spaces ψi : HGi → HHi
G such that, according to

Proposition 2, ψi · AGi = AG · ψi. Hence, it follows that ζG1(s) = trace(AG|
HH1

G ) = trace(AG|HH2
G ) = ζG2(s). ✷

Now let G be a group and l = {g1, . . . , gn} a subset of the set of elements of G.
Then the Cayley graph G[g1, . . . , gn] is constructed as follows: The vertex set is
the set of elements of G and the edge set is {{x, gx} : x ∈ G, g ∈ l}. Then G acts
as isomorphisms on G[g1, . . . , gn] by multiplication from the right. Furthermore,
the strong (and, hence, the weak) fixed point condition is fulfilled for any subgroup
of G. Hence, we have as a corollary the theorem of Brooks (see [2]).

Corollary 1 (Brooks). If H1 and H2 are Gassmann subgroups of G, then G[g1,
. . . , gn]/H1 and G[g1, . . . , gn]/H2 are isospectral graphs.

3. REDUCTION OF MULTIPLE EDGES

The isospectral graphs obtained by applying Theorem 1 or Corollary 1 to concrete
examples are in general not simple, even if the original graph was, and even if
loops are eliminated. In this section, we show how one may always obtain simple
isospectral graphs by introducing suitable new vertices that do not violate the weak
fixed point condition. Let us start with the following example.

Example 1. Consider the semidirect product

G = Z∗8 ! Z8 = {(x, y) : x = 1, 3, 5, 7; y = 0, 1, 2, . . . , 7}

with product structure

(x, y) · (x′, y′) = (xx′, xy′ + y) mod 8.

FIGURE 1. The isospectral graphs G1 on the left and G2 on the right.
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Motivations and background

• Obtaining quotients with different representations: Generalisation -
quotients isospectral if IndG

H1
(ρ1) ∼= IndG

H2
(ρ2) [Band, Parzanchevski & Ben-Shach

’09]

rxy
rx

D N

D

D N

N

• Spectral computation in transitive graphs: [Chung & Sternberg ’92]
LAPLACIANS OF HOMOGENEOUS GRAPHS 61 3 

FIGURE 1 

stable. Thus for benzene, which is a cycle graph with n = 6,  the top three 
eigenvalues are 2,1,1, as we have seen. So the sum is 4, which is greater 
than 3.  For the buckyball, the sum of the top thirty eigenvalues comes to 
46.15, cf. [ 4 ] .  This is to be compared with 30. So the ratio of stability of 
the buckyball (according to this model) is even greater than benzene. 

We remark that the eigenvalues of the buckyball can be written in closed 
form as roots of the following equations (cf. [ 4 ] )  where the single bonds are 
weighted by 1 and the double bonds are weighted by t :  

(a) (x2 + x - t2  + t - 1)(x3 - tx2 - x 2  - t2x + 2tx - 3x + t3  - 

(b) ( x 2  + x - t2  - 1) (x2 + x - ( t  + 1)2) = 0 with multiplicity 4;  
t2  + t + 2 )  = 0 with multiplicity 5; 

(c) (2 + (2t + 1)x + t2 + t - 1) (x4 - 3x3 + (-2t2 + t - 1)x2 + 
(3t2 - 4t + 8)x + t4 - t3 + t2  + 4t - 4 )  = 0 with multiplicity 3; 

(d) x - t - 2 = 0 with multiplicity 1. 

—— 8 ——



Questions arising

• Spectral interpretation: [Band, Parzanchevski & Ben-Shach ’09] - A quotient

operator is any operator Õp such that

EÕp
λ
∼= HomG (Vρ,E

Op
λ )

Works for self-adjoint operators - what about other types?

• Fixed points: [Halbeisen & Hungerbühler ’99] - Extend to other
representations, remove fixed point conditions

• Transitive graphs: [Chung & Sternberg ’92] - What about non-transitive
graphs?

—— 9 ——



Representation theory

• Symmetry: We say that a finite-dimensional operator Op is π-symmetric if

π(g) Op = Opπ(g) ∀g ∈ G

Assume π(g) to be permutation matrices.

• Representations: Vectors transform in following manner

[π(g)φk ](x) = φk(g−1x) =
r∑

l=1

φl(x)ρ(g)lk ∀g ∈ G , k = 1, . . . , r

ρ(g1)ρ(g2) = ρ(g1g2).

• Hom space: We denote by HomG (Vρ,Vπ) the space of all φ : Vρ → Vπ such
that

π(g)φ = φρ(g) ∀g ∈ G

—— 10 ——



Constructing a new definition

• Vectorisation: Introduce procedure vec : Mn×m(C)→ Cnm, e.g.

vec

((
a1 b1
a2 b2

))
=


a1
a2
b1
b2


• Kernel space: Applying vec gives (Ir ⊗ π(g)) vec(φ) = (ρ(g)T ⊗ Ip) vec(φ)

KG (ρ, π) =
⋂
g∈G

ker
[
Ir ⊗ π(g)− ρ(g)T ⊗ Ip

]
.

Thus ψ = vec(φ) ∈ KG (ρ, π) ⇐⇒ φ ∈ HomG (Vρ,Vπ).

• Quotient operator: Let Op be π-symmetric and Θ a basis for KG (ρ, π), then

Opρ := Θ∗[Ir ⊗ Op]Θ

—— 11 ——



Properties of quotient operator

Opρ := Θ∗[Ir ⊗ Op]Θ

• Operator type: One may choose any operator Op, only requirement is
π-symmetric.

• Decomposition: If R ∼=
⊕
ρ then OpR

∼=
⊕

Opρ. In particular, if ρ are
irreps of G , then

Op ∼=
⊕
ρ

[Ideg ρ ⊗ Opρ],

• Normality: If Op∗Op = Op Op∗ then Op∗ρ Opρ = Opρ Op∗ρ.

• Spectral property: For any Op we now have E
Opρ
λ
∼= HomG (Vρ,E

Op
λ )

• Unitary equivalence: Choosing a different basis Θ̃ = ΘU leads to equivalent
operator.

—— 12 ——



Choosing a basis

• Orbits: Let P = {1, . . . , p} be set of points. Then orbit of i is

Oi := {j ∈ P : ∃g ∈ G s.t. i = gj}.

Then fundamental domain a set of one representative from each orbit,
D = {1, . . . , |D|}.

• Example: Line graph on 5 vertices

O1 = {1, 5}, O2 = {2, 4}, O3 = {3}

1 2 3 4 5

D = {1, 2, 3}
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Choosing a basis

Theorem (J., Band, Berkolaiko, Liu)

Let columns of matrix Θi be an orthonormal basis for

Ki
G (ρ, π) := KG (ρ, π) ∩ [Vρ ⊗ Xi ], Xi := span{ej : j ∈ Oi}.

Then columns of Θ = (Θ1 . . . Θ|D|) form orthonormal basis for KG (π, ρ).

• Example: Line graph on 5 vertices, K(±, π) = ker[π(r)∓ I5]

Θ+ =
1√
2


1 0 0
0 1 0

0 0
√

2
0 1 0
1 0 0

 , Θ− =
1√
2


1 0
0 1
0 0
0 −1
−1 0

 ,

1 2 3 4 5
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√
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1√
2
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Form of quotient operator

Theorem (J., Band, Berkolaiko, Liu)

Choose Θ as in previous theorem, then quotient operator will consist of blocks
of the form

[Opρ]ij =
1√
|Gi ||Gj |

∑
g∈G

(Φ∗i ρ̄(g)Φj) Opi,gj ,

where Gi := {g ∈ G : gi = i} is fixed point group of i and Φi an orthonormal
basis for ⋂

g∈Gi

ker[Ir − ρ(g)].

• Structure preservation: Connections of original operator are preserved in
following sense

◦ [Opρ]i,j 6= 0 only if ∃ elements k ∈ Oi , l ∈ Oj s.t. Opkl 6= 0.

◦ [Opρ]i,j does not depend on elements from other orbits.
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Example 2 - higher dimensional irreps

• Reducing points: Take tetrahedron, invariant under S4. Two orbits given by
O• = {1, 2, 3, 4} and O× = {5, . . . , 16}.

1 2

3

45
6

Hij =


a • ∼ ×
b × ∼ ×
V• • = •
V× × = ×

• Irreducible representation: ‘Standard’ representation of S4, generated by

R((12)) =

 0 −1 0
−1 0 0
0 0 1

 , R((23)) =

0 0 1
0 1 0
1 0 0

 , R((34)) =

0 1 0
1 0 0
0 0 1



• Action: Take ψ ∈ KG (R, π), with ψ(x) = (φ1(x), φ2(x), φ3(x))T

[π(g)ψ](x) = R(g)Tψ(x)
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Example 2 - higher dimensional irreps

• Fixed points: Take for example, G• = S3 (exchange 2, 3, 4). Then

ψ(•) = ψ(g−1•) = R(g)Tψ(•) ∀ g ∈ G•.

Therefore ψ(•) ∈
⋂

g∈G•
ker[Ir − R̄(g)].

• Quotient operator: We have dim(K•G (ρ, π)) = 1 and dim(K×G (ρ, π)) = 2,
leading to

  

V

V−
b

3

a √3

V+
b

32b √2/3

HR =

 V• a a
√

2
a V× + b 0

a
√

2 0 V× − b
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Example 3 - Non-normal operators

• Directed graphs: Take following adjacency matrix

1 2

3

4

A =


0 1 0 0
1 0 0 0
0 1 0 0
0 1 0 0



• Form quotient operator: Fixed point group G2 = Z2, so
[Atriv]32 = 1√

2
(A32 + A42) =

√
2, and in full

1 2

3

4

√
2

Atriv =

0 1 0
1 0 0

0
√

2 0



• Spectrum: There is (non-unitary) Q such that Q−1 diag(0, 1,−1)Q = Atriv.
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Conclusions and outlook

• Summary:

◦ New definition for finite-dimensional quotient operators

◦ Generalises previous notions from isospectraility

◦ Can show the choice of basis that leads to structure preservation

• Further research:

◦ Is there an analogous spectral condition?

◦ What about antiunitary symmetries?

◦ Cellular graphs?
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