Quotients of finite-dimensional operators by symmetry representations

Chris Joyner

(joint work with R. Band, G. Berkolaiko and W. Liu)

July 31, 2017

The Leverhulme Trust

Outline

• Simple example - Part I

• Simple example - Part II

• Motivations/background - Isospectrality, spectral computation

• Results - New definition, alignment with previous notions, generalisations

• Other interesting examples and discussion

• Line graph: Laplacian on 5 vertices, $G = \{e, r\}$, $L\pi(r) = \pi(r)L$

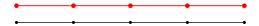
	/ 1	$^{-1}$	0	0	0 \		(0	0	0	0	1
	-1	2	$^{-1}$	0	0		0	0	0	1	0
L =	0	$^{-1}$	2	-1	0	, $\pi(r) =$	0	0	1	0	0
	0	0	$^{-1}$	2	-1		0	1	0	0	0
L =	0 /	0	0	-1	1 /		$\backslash 1$	0	0	0	0/

$$\sigma(L) = \left\{0, \ \frac{1}{2}(3-\sqrt{5}), \ \frac{1}{2}(5-\sqrt{5}), \ \frac{1}{2}(3+\sqrt{5}), \ \frac{1}{2}(5+\sqrt{5})\right\}$$

• Line graph: Laplacian on 5 vertices, $G = \{e, r\}$, $L\pi(r) = \pi(r)L$

	/ 1	$^{-1}$	0	0	0 \		/0	0	0	0	1
	-1	2	$^{-1}$	0	0		0	0	0	1	0
L =	0	$^{-1}$	2	$^{-1}$	0	, $\pi(r) =$	0	0	1	0	0
	0	0	$^{-1}$	2	-1		0	1	0	0	0
<i>L</i> =	0 /	0	0	$^{-1}$	1 /		$\backslash 1$	0	0	0	0/

$$\sigma(L) = \left\{ 0, \ \frac{1}{2}(3-\sqrt{5}), \ \frac{1}{2}(5-\sqrt{5}), \ \frac{1}{2}(3+\sqrt{5}), \ \frac{1}{2}(5+\sqrt{5}) \right\}$$



• Line graph: Laplacian on 5 vertices, $G = \{e, r\}$, $L\pi(r) = \pi(r)L$

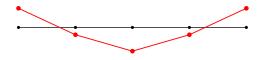
	/ 1	$^{-1}$	0	0	0 \		/0	0	0	0	1
	-1	2	$^{-1}$	0	0		0	0	0	1	0
L =	0	$^{-1}$	2	$^{-1}$	0	, $\pi(r) =$	0	0	1	0	0
	0	0	$^{-1}$	2	-1		0	1	0	0	0
<i>L</i> =	0 /	0	0	$^{-1}$	1 /		$\backslash 1$	0	0	0	0/

$$\sigma(L) = \left\{ 0, \ \frac{1}{2}(3-\sqrt{5}), \ \frac{1}{2}(5-\sqrt{5}), \ \frac{1}{2}(3+\sqrt{5}), \ \frac{1}{2}(5+\sqrt{5}) \right\}$$

• Line graph: Laplacian on 5 vertices, $G = \{e, r\}$, $L\pi(r) = \pi(r)L$

	/ 1	$^{-1}$	0	0	0 \		/0	0	0	0	1
	-1	2	$^{-1}$	0	0		0	0	0	1	0
L =	0	$^{-1}$	2	$^{-1}$	0	, $\pi(r) =$	0	0	1	0	0
	0	0	$^{-1}$	2	-1		0	1	0	0	0
<i>L</i> =	0 /	0	0	$^{-1}$	1 /		$\backslash 1$	0	0	0	0/

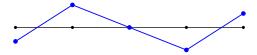
$$\sigma(L) = \left\{0, \ \frac{1}{2}(3-\sqrt{5}), \ \frac{1}{2}(5-\sqrt{5}), \ \frac{1}{2}(3+\sqrt{5}), \ \frac{1}{2}(5+\sqrt{5})\right\}$$



• Line graph: Laplacian on 5 vertices, $G = \{e, r\}$, $L\pi(r) = \pi(r)L$

	/ 1	$^{-1}$	0	0	0 \		/0	0	0	0	1
	-1	2	$^{-1}$	0	0		0	0	0	1	0
L =	0	$^{-1}$	2	$^{-1}$	0	, $\pi(r) =$	0	0	1	0	0
	0	0	$^{-1}$	2	-1		0	1	0	0	0
<i>L</i> =	0 /	0	0	$^{-1}$	1 /		$\backslash 1$	0	0	0	0/

$$\sigma(L) = \left\{0, \ \frac{1}{2}(3-\sqrt{5}), \ \frac{1}{2}(5-\sqrt{5}), \ \frac{1}{2}(3+\sqrt{5}), \ \frac{1}{2}(5+\sqrt{5})\right\}$$



• Line graph: Laplacian on 5 vertices, $G = \{e, r\}$, $L\pi(r) = \pi(r)L$

	/ 1	$^{-1}$	0	0	0 \		/0	0	0	0	1
	-1	2	$^{-1}$	0	0		0	0	0	1	0
L =	0	$^{-1}$	2	$^{-1}$	0	, $\pi(r) =$	0	0	1	0	0
	0	0	$^{-1}$	2	-1		0	1	0	0	0
<i>L</i> =	0 /	0	0	$^{-1}$	1 /		$\backslash 1$	0	0	0	0/

$$\sigma(L) = \left\{0, \ \frac{1}{2}(3-\sqrt{5}), \ \frac{1}{2}(5-\sqrt{5}), \ \frac{1}{2}(3+\sqrt{5}), \ \frac{1}{2}(5+\sqrt{5})\right\}$$

• Isolate even functions: Modify eigenvalue equation with *information* of trivial representation f(x) = f(-x)

$$\lambda f(0) = [Lf](0) = 2f(0) - f(1) - f(-1) = 2f(0) - 2f(1)$$

$$\lambda f(1) = [Lf](1) = 2f(1) - f(2) - f(0)$$

$$\lambda f(2) = [Lf](2) = f(2) - f(1)$$

• Matrix form: Reading off coefficients gives

$$\lambda f = \widetilde{L}_+ f, \qquad \widetilde{L}_+ = \begin{pmatrix} 2 & -2 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

• Normalisation: If we choose $g(0) = f(0), g(x) = \sqrt{2}f(x), x = 1, 2$, then

$$\sum_{x=0}^{2} g(x)^{2} = \sum_{x=-2}^{2} f(x)^{2} = 1$$

• Isolate even functions: Modify eigenvalue equation with *information* of trivial representation f(x) = f(-x)

$$\lambda g(0) = [L_+g](0) = 2g(0) - \sqrt{2}g(1)$$

$$\lambda g(1) = [L_+g](1) = 2g(1) - g(2) - \sqrt{2}g(0)$$

$$\lambda g(2) = [L_+g](2) = g(2) - g(1)$$

• Matrix form: Reading off coefficients gives

$$\lambda g = L_+ g, \qquad L_+ = egin{pmatrix} 2 & -\sqrt{2} & 0 \ -\sqrt{2} & 2 & -1 \ 0 & -1 & 1 \end{pmatrix}$$

• Spectrum: $\sigma(L_+) = \left\{ 0, \frac{1}{2}(5-\sqrt{5}), \frac{1}{2}(5+\sqrt{5}) \right\}$

• Isolate even functions: Modify eigenvalue equation with *information* of trivial representation f(x) = f(-x)

$$\lambda g(0) = [L_+g](0) = 2g(0) - \sqrt{2}g(1)$$

$$\lambda g(1) = [L_+g](1) = 2g(1) - g(2) - \sqrt{2}g(0)$$

$$\lambda g(2) = [L_+g](2) = g(2) - g(1)$$

• Matrix form: Reading off coefficients gives

$$\lambda g = L_+ g, \qquad L_+ = egin{pmatrix} 2 & -\sqrt{2} & 0 \ -\sqrt{2} & 2 & -1 \ 0 & -1 & 1 \end{pmatrix}$$

• Spectrum: $\sigma(L_+) = \left\{0, \frac{1}{2}(5-\sqrt{5}), \frac{1}{2}(5+\sqrt{5})\right\}$

• Isolate even functions: Modify eigenvalue equation with *information* of trivial representation f(x) = f(-x)

$$\lambda g(0) = [L_+g](0) = 2g(0) - \sqrt{2}g(1)$$

$$\lambda g(1) = [L_+g](1) = 2g(1) - g(2) - \sqrt{2}g(0)$$

$$\lambda g(2) = [L_+g](2) = g(2) - g(1)$$

• Matrix form: Reading off coefficients gives

$$\lambda g = L_+ g, \qquad L_+ = egin{pmatrix} 2 & -\sqrt{2} & 0 \ -\sqrt{2} & 2 & -1 \ 0 & -1 & 1 \end{pmatrix}$$

• Spectrum: $\sigma(L_+) = \left\{0, \frac{1}{2}(5-\sqrt{5}), \frac{1}{2}(5+\sqrt{5})\right\}$

• Alternative viewpoint: Take a basis of even/odd vectors

$$\Theta_+ = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \Theta_- = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -1 \\ -1 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix},$$

• Conjugate with original operator: Then we have $L_{\pm} = \Theta_{\pm}^* L \Theta_{\pm}$, i.e.

$$\Theta^*_+ \mathcal{L} \Theta_+ = egin{pmatrix} 2 & -\sqrt{2} & 0 \ -\sqrt{2} & 2 & -1 \ 0 & -1 & 1 \end{pmatrix}, \qquad \Theta_- \mathcal{L} \Theta_- = egin{pmatrix} 2 & -1 \ -1 & 1 \end{pmatrix},$$

• Block diagonalisation: $Z = (\Theta_+ \ \Theta_-)$, then

$$Z^*\pi(r)Z = diag(1, 1, 1, -1, -1), \qquad Z^*LZ = L_+ \oplus L_-$$

• Conjugate with original operator: Then we have $L_{\pm} = \Theta_{\pm}^* L \Theta_{\pm}$, i.e.

$$\Theta^*_+ \mathcal{L} \Theta_+ = egin{pmatrix} 2 & -\sqrt{2} & 0 \ -\sqrt{2} & 2 & -1 \ 0 & -1 & 1 \end{pmatrix}, \qquad \Theta_- \mathcal{L} \Theta_- = egin{pmatrix} 2 & -1 \ -1 & 1 \end{pmatrix},$$

• Unitary equivalence: Take any unitary matrix, then following also valid

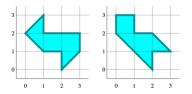
$$\Theta_{\pm} \mapsto \Theta_{\pm} U \qquad , L_{\pm} \mapsto U^* L_{\pm} U$$

• The question: Given unitary invariance, for arbitrary symmetries,

How do we consistently choose Θ ?

Motivations and background

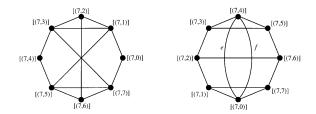
• Isospectrality: [Sunada '85, Gordon, Webb & Wolpert '92]



Quotient graphs are isospectral if

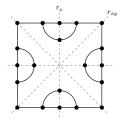
$$\operatorname{Ind}_{H_1}^G(\operatorname{triv})\cong \operatorname{Ind}_{H_2}^G(\operatorname{triv})$$

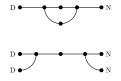
• Isospectrality in discrete graphs: [Brooks '99, Halbeisen & Hungerbühler '99]



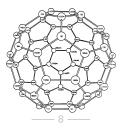
Motivations and background

• Obtaining quotients with different representations: Generalisation - quotients isospectral if $\operatorname{Ind}_{H_1}^G(\rho_1) \cong \operatorname{Ind}_{H_2}^G(\rho_2)$ [Band, Parzanchevski & Ben-Shach '09]





• Spectral computation in transitive graphs: [Chung & Sternberg '92]



Questions arising

• Spectral interpretation: [Band, Parzanchevski & Ben-Shach '09] - A quotient operator is any operator \widetilde{Op} such that

$$\mathsf{E}_{\lambda}^{\widetilde{\mathsf{Op}}}\cong \mathsf{Hom}_{\mathcal{G}}(V_{
ho},\mathsf{E}_{\lambda}^{\mathsf{Op}})$$

Works for self-adjoint operators - what about other types?

• Fixed points: [Halbeisen & Hungerbühler '99] - Extend to other representations, remove fixed point conditions

• **Transitive graphs:** [Chung & Sternberg '92] - What about non-transitive graphs?

• Symmetry: We say that a finite-dimensional operator Op is π -symmetric if

$$\pi(g)\operatorname{Op}=\operatorname{Op}\pi(g)\qquad orall g\in G$$

Assume $\pi(g)$ to be permutation matrices.

• Representations: Vectors transform in following manner

$$[\pi(g)\phi_k](x) = \phi_k(g^{-1}x) = \sum_{l=1}^r \phi_l(x)\rho(g)_{lk} \quad \forall g \in G, k = 1, \dots, r$$

 $ho(g_1)
ho(g_2) =
ho(g_1g_2).$

• Hom space: We denote by $\operatorname{Hom}_G(V_\rho, V_\pi)$ the space of all $\phi: V_\rho \to V_\pi$ such that

$$\pi(g)\phi=\phi
ho(g)\qquad orall g\in G$$

Constructing a new definition

• Vectorisation: Introduce procedure vec : $M_{n \times m}(\mathbb{C}) \to \mathbb{C}^{nm}$, e.g.

$$\operatorname{vec}\left(\begin{pmatrix}a_1 & b_1\\a_2 & b_2\end{pmatrix}\right) = \begin{pmatrix}a_1\\a_2\\b_1\\b_2\end{pmatrix}$$

• Kernel space: Applying vec gives $(\mathbf{I}_r \otimes \pi(g)) \operatorname{vec}(\phi) = (\rho(g)^T \otimes \mathbf{I}_p) \operatorname{vec}(\phi)$

$$\mathcal{K}_{\mathcal{G}}(
ho,\pi) = igcap_{g\in\mathcal{G}} \ker\left[\mathsf{I}_r\otimes\pi(g) -
ho(g)^T\otimes\mathsf{I}_{
ho}
ight].$$

Thus $\psi = \operatorname{vec}(\phi) \in \mathcal{K}_{\mathcal{G}}(\rho, \pi) \iff \phi \in \operatorname{Hom}_{\mathcal{G}}(V_{\rho}, V_{\pi}).$

• Quotient operator: Let Op be π -symmetric and Θ a basis for $\mathcal{K}_{\mathcal{G}}(\rho, \pi)$, then

$$\mathsf{Op}_{\rho} := \Theta^* [\mathsf{I}_r \otimes \mathsf{Op}] \Theta$$

Properties of quotient operator

$$\mathsf{Op}_{
ho}:=\Theta^*[\mathbf{I}_r\otimes\mathsf{Op}]\Theta$$

• **Operator type:** One may choose any operator Op, only requirement is π -symmetric.

• Decomposition: If $R \cong \bigoplus \rho$ then $Op_R \cong \bigoplus Op_{\rho}$. In particular, if ρ are irreps of G, then

$$\mathsf{Op} \cong igoplus_{
ho} [\mathbf{I}_{\mathsf{deg}\,
ho} \otimes \mathsf{Op}_{
ho}],$$

- Normality: If $Op^* Op = Op Op^*$ then $Op^*_{\rho} Op_{\rho} = Op_{\rho} Op^*_{\rho}$.
- Spectral property: For any Op we now have $\mathsf{E}_{\lambda}^{\mathsf{Op}_{\rho}} \cong \operatorname{Hom}_{G}(V_{\rho}, \mathsf{E}_{\lambda}^{\mathsf{Op}})$

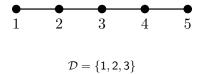
• Unitary equivalence: Choosing a different basis $\widetilde{\Theta} = \Theta U$ leads to equivalent operator.

• Orbits: Let $\mathcal{P} = \{1, \dots, p\}$ be set of points. Then *orbit* of *i* is

$$O_i := \{ j \in \mathcal{P} : \exists g \in G \text{ s.t. } i = gj \}.$$

Then fundamental domain a set of one representative from each orbit, $\mathcal{D} = \{1, \dots, |\mathcal{D}|\}.$

$$O_1 = \{1,5\}, \qquad O_2 = \{2,4\}, \qquad O_3 = \{3\}$$

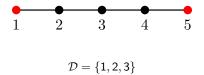


• Orbits: Let $\mathcal{P} = \{1, \dots, p\}$ be set of points. Then *orbit* of *i* is

$$O_i := \{ j \in \mathcal{P} : \exists g \in G \text{ s.t. } i = gj \}.$$

Then fundamental domain a set of one representative from each orbit, $\mathcal{D} = \{1, \dots, |\mathcal{D}|\}.$

$$O_1 = \{1, 5\}, \qquad O_2 = \{2, 4\}, \qquad O_3 = \{3\}$$

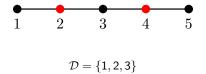


• Orbits: Let $\mathcal{P} = \{1, \dots, p\}$ be set of points. Then *orbit* of *i* is

$$O_i := \{ j \in \mathcal{P} : \exists g \in G \text{ s.t. } i = gj \}.$$

Then fundamental domain a set of one representative from each orbit, $\mathcal{D} = \{1, \dots, |\mathcal{D}|\}.$

$$O_1 = \{1, 5\}, \qquad O_2 = \{2, 4\}, \qquad O_3 = \{3\}$$

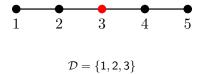


• Orbits: Let $\mathcal{P} = \{1, \dots, p\}$ be set of points. Then *orbit* of *i* is

$$O_i := \{ j \in \mathcal{P} : \exists g \in G \text{ s.t. } i = gj \}.$$

Then fundamental domain a set of one representative from each orbit, $\mathcal{D} = \{1, \dots, |\mathcal{D}|\}.$

$$O_1 = \{1, 5\}, \qquad O_2 = \{2, 4\}, \qquad O_3 = \{3\}$$

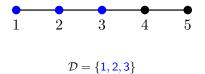


• Orbits: Let $\mathcal{P} = \{1, \dots, p\}$ be set of points. Then *orbit* of *i* is

$$O_i := \{ j \in \mathcal{P} : \exists g \in G \text{ s.t. } i = gj \}.$$

Then fundamental domain a set of one representative from each orbit, $\mathcal{D} = \{1, \dots, |\mathcal{D}|\}.$

$$O_1 = \{1, 5\}, \qquad O_2 = \{2, 4\}, \qquad O_3 = \{3\}$$



Theorem (J., Band, Berkolaiko, Liu)

Let columns of matrix Θ_i be an orthonormal basis for

 $\mathcal{K}^i_{\mathcal{G}}(
ho,\pi):=\mathcal{K}_{\mathcal{G}}(
ho,\pi)\cap [V_
ho\otimes X_i],\qquad X_i:=\mathsf{span}\{\mathbf{e}_j:j\in O_i\}.$

Then columns of $\Theta = (\Theta_1 \dots \Theta_{|\mathcal{D}|})$ form orthonormal basis for $\mathcal{K}_{\mathsf{G}}(\pi, \rho)$.

• Example: Line graph on 5 vertices, $\mathcal{K}(\pm,\pi) = \text{ker}[\pi(r) \mp I_5]$

$$\Theta_{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & \sqrt{2}\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}, \qquad \Theta_{-} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0\\ 0 & 1\\ 0 & 0\\ 0 & -1\\ -1 & 0 \end{pmatrix},$$

Theorem (J., Band, Berkolaiko, Liu)

Let columns of matrix Θ_i be an orthonormal basis for

 $\mathcal{K}^i_{\mathcal{G}}(
ho,\pi):=\mathcal{K}_{\mathcal{G}}(
ho,\pi)\cap [V_
ho\otimes X_i],\qquad X_i:=\mathsf{span}\{\mathbf{e}_j:j\in O_i\}.$

Then columns of $\Theta = (\Theta_1 \dots \Theta_{|\mathcal{D}|})$ form orthonormal basis for $\mathcal{K}_{\mathsf{G}}(\pi, \rho)$.

• Example: Line graph on 5 vertices, $\mathcal{K}^1(\pm,\pi) = \ker[\pi(r) \mp I_5] \cap X_1$

$$\Theta_{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad \Theta_{-} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & -1 \\ -1 & 0 \end{pmatrix},$$

Theorem (J., Band, Berkolaiko, Liu)

Let columns of matrix Θ_i be an orthonormal basis for

 $\mathcal{K}^i_{\mathcal{G}}(
ho,\pi):=\mathcal{K}_{\mathcal{G}}(
ho,\pi)\cap [V_
ho\otimes X_i],\qquad X_i:=\mathsf{span}\{\mathbf{e}_j:j\in O_i\}.$

Then columns of $\Theta = (\Theta_1 \dots \Theta_{|\mathcal{D}|})$ form orthonormal basis for $\mathcal{K}_{\mathsf{G}}(\pi, \rho)$.

• Example: Line graph on 5 vertices, $\mathcal{K}^2(\pm,\pi) = \ker[\pi(r) \mp I_5] \cap X_2$

$$\Theta_{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad \Theta_{-} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & -1 \\ -1 & 0 \end{pmatrix},$$

Theorem (J., Band, Berkolaiko, Liu)

Let columns of matrix Θ_i be an orthonormal basis for

$$\mathcal{K}^i_{\mathcal{G}}(\rho,\pi) := \mathcal{K}_{\mathcal{G}}(\rho,\pi) \cap [V_{\rho} \otimes X_i], \qquad X_i := \operatorname{span}\{\mathbf{e}_j : j \in O_i\}.$$

Then columns of $\Theta = (\Theta_1 \dots \Theta_{|\mathcal{D}|})$ form orthonormal basis for $\mathcal{K}_{\mathsf{G}}(\pi, \rho)$.

• Example: Line graph on 5 vertices, $\mathcal{K}^3(\pm,\pi) = \ker[\pi(r) \mp I_5] \cap X_3$

$$\Theta_{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad \Theta_{-} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & -1 \\ -1 & 0 \end{pmatrix},$$

14 -

Theorem (J., Band, Berkolaiko, Liu)

Choose Θ as in previous theorem, then quotient operator will consist of blocks of the form

$$[\mathsf{Op}_{\rho}]_{ij} = rac{1}{\sqrt{|\mathcal{G}_i||\mathcal{G}_j|}} \sum_{g \in \mathcal{G}} (\Phi_i^* ar{
ho}(g) \Phi_j) \, \mathsf{Op}_{i,gj},$$

where $G_i := \{g \in G : gi = i\}$ is fixed point group of i and Φ_i an orthonormal basis for

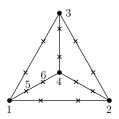
$$\bigcap_{g\in G_i} \ker[\mathbf{I}_r - \rho(g)].$$

• Structure preservation: Connections of original operator are preserved in following sense

- $[Op_{\rho}]_{i,j} \neq 0$ only if ∃ elements $k \in O_i$, $l \in O_j$ s.t. $Op_{kl} \neq 0$.
- $\circ~[\mathrm{Op}_{\boldsymbol{\rho}}]_{i,j}$ does not depend on elements from other orbits.

Example 2 - higher dimensional irreps

• Reducing points: Take tetrahedron, invariant under S_4 . Two orbits given by $O_{\bullet} = \{1, 2, 3, 4\}$ and $O_{\times} = \{5, \dots, 16\}$.



$$H_{ij} = \begin{cases} a & \bullet \sim \times \\ b & \times \sim \times \\ V_{\bullet} & \bullet = \bullet \\ V_{\times} & \times = \times \end{cases}$$

• Irreducible representation: 'Standard' representation of S_4 , generated by

$$R((12)) = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ R((23)) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ R((34)) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 Action: Take ψ ∈ K_G(R, π), with ψ(x) = (φ₁(x), φ₂(x), φ₃(x))^T [π(g)ψ](x) = R(g)^Tψ(x)

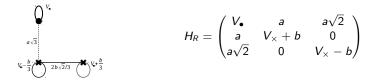
Example 2 - higher dimensional irreps

• Fixed points: Take for example, $G_{\bullet} = S_3$ (exchange 2, 3, 4). Then

$$\psi(ullet)=\psi(g^{-1}ullet)=R(g)^T\psi(ullet)\qquad orall\ g\in G_ullet.$$

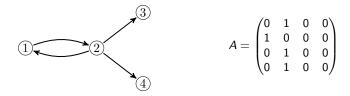
Therefore $\psi(\bullet) \in \bigcap_{g \in G_{\bullet}} \ker[\mathbf{I}_r - \bar{R}(g)].$

• Quotient operator: We have dim $(\mathcal{K}^{\diamond}_{\mathcal{G}}(\rho,\pi)) = 1$ and dim $(\mathcal{K}^{\times}_{\mathcal{G}}(\rho,\pi)) = 2$, leading to

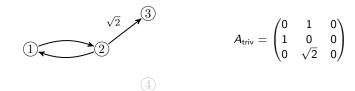


Example 3 - Non-normal operators

• Directed graphs: Take following adjacency matrix



• Form quotient operator: Fixed point group $G_2 = \mathbb{Z}_2$, so $[A_{triv}]_{32} = \frac{1}{\sqrt{2}}(A_{32} + A_{42}) = \sqrt{2}$, and in full



• **Spectrum:** There is (non-unitary) Q such that Q^{-1} diag $(0, 1, -1)Q = A_{triv}$.

• Summary:

- \circ New definition for finite-dimensional quotient operators
- Generalises previous notions from isospectraility
- $\circ\,$ Can show the choice of basis that leads to structure preservation

• Further research:

- o Is there an analogous spectral condition?
- What about antiunitary symmetries?
- Cellular graphs?