Quotients of finite-dimensional operators by symmetry representations

Chris Joyner

(joint work with R. Band, G. Berkolaiko and W. Liu)

July 31, 2017

Outline

- Simple example - Part I
- Simple example - Part II
- Motivations/background - Isospectrality, spectral computation
- Results - New definition, alignment with previous notions, generalisations
- Other interesting examples and discussion

Simple example - Part I

- Line graph: Laplacian on 5 vertices, $G=\{e, r\}, L \pi(r)=\pi(r) L$

$$
L=\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right), \quad \pi(r)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

- Reflection symmetry: Eigenfunctions are either even or odd under reflection, $[\pi(r) f](x)=f(-x)= \pm f(x)$

$$
\sigma(L)=\left\{0, \frac{1}{2}(3-\sqrt{5}), \frac{1}{2}(5-\sqrt{5}), \frac{1}{2}(3+\sqrt{5}), \frac{1}{2}(5+\sqrt{5})\right\}
$$

Simple example - Part I

- Line graph: Laplacian on 5 vertices, $G=\{e, r\}, L \pi(r)=\pi(r) L$

$$
L=\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right), \quad \pi(r)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

- Reflection symmetry: Eigenfunctions are either even or odd under reflection, $[\pi(r) f](x)=f(-x)= \pm f(x)$

$$
\sigma(L)=\left\{0, \frac{1}{2}(3-\sqrt{5}), \frac{1}{2}(5-\sqrt{5}), \frac{1}{2}(3+\sqrt{5}), \frac{1}{2}(5+\sqrt{5})\right\}
$$

Simple example - Part I

- Line graph: Laplacian on 5 vertices, $G=\{e, r\}, L \pi(r)=\pi(r) L$

$$
L=\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right), \quad \pi(r)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

- Reflection symmetry: Eigenfunctions are either even or odd under reflection, $[\pi(r) f](x)=f(-x)= \pm f(x)$

$$
\sigma(L)=\left\{0, \frac{1}{2}(3-\sqrt{5}), \frac{1}{2}(5-\sqrt{5}), \frac{1}{2}(3+\sqrt{5}), \frac{1}{2}(5+\sqrt{5})\right\}
$$

Simple example - Part I

- Line graph: Laplacian on 5 vertices, $G=\{e, r\}, L \pi(r)=\pi(r) L$

$$
L=\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right), \quad \pi(r)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

- Reflection symmetry: Eigenfunctions are either even or odd under reflection, $[\pi(r) f](x)=f(-x)= \pm f(x)$

$$
\sigma(L)=\left\{0, \frac{1}{2}(3-\sqrt{5}), \frac{1}{2}(5-\sqrt{5}), \frac{1}{2}(3+\sqrt{5}), \frac{1}{2}(5+\sqrt{5})\right\}
$$

Simple example - Part I

- Line graph: Laplacian on 5 vertices, $G=\{e, r\}, L \pi(r)=\pi(r) L$

$$
L=\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right), \quad \pi(r)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

- Reflection symmetry: Eigenfunctions are either even or odd under reflection, $[\pi(r) f](x)=f(-x)= \pm f(x)$

$$
\sigma(L)=\left\{0, \frac{1}{2}(3-\sqrt{5}), \frac{1}{2}(5-\sqrt{5}), \frac{1}{2}(3+\sqrt{5}), \frac{1}{2}(5+\sqrt{5})\right\}
$$

Simple example - Part I

- Line graph: Laplacian on 5 vertices, $G=\{e, r\}, L \pi(r)=\pi(r) L$

$$
L=\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right), \quad \pi(r)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

- Reflection symmetry: Eigenfunctions are either even or odd under reflection, $[\pi(r) f](x)=f(-x)= \pm f(x)$

$$
\sigma(L)=\left\{0, \frac{1}{2}(3-\sqrt{5}), \frac{1}{2}(5-\sqrt{5}), \frac{1}{2}(3+\sqrt{5}), \frac{1}{2}(5+\sqrt{5})\right\}
$$

Simple example - Part I

- Isolate even functions: Modify eigenvalue equation with information of trivial representation $f(x)=f(-x)$

$$
\begin{aligned}
& \lambda f(0)=[L f](0)=2 f(0)-f(1)-f(-1)=2 f(0)-2 f(1) \\
& \lambda f(1)=[L f](1)=2 f(1)-f(2)-f(0) \\
& \lambda f(2)=[L f](2)=f(2)-f(1)
\end{aligned}
$$

- Matrix form: Reading off coefficients gives

$$
\lambda f=\tilde{L}_{+} f, \quad \tilde{L}_{+}=\left(\begin{array}{ccc}
2 & -2 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

- Normalisation: If we choose $g(0)=f(0), g(x)=\sqrt{2} f(x), x=1,2$, then

$$
\sum_{x=0}^{2} g(x)^{2}=\sum_{x=-2}^{2} f(x)^{2}=1
$$

Simple example - Part I

- Isolate even functions: Modify eigenvalue equation with information of trivial representation $f(x)=f(-x)$

$$
\begin{aligned}
& \lambda g(0)=\left[L_{+} g\right](0)=2 g(0)-\sqrt{2} g(1) \\
& \lambda g(1)=\left[L_{+} g\right](1)=2 g(1)-g(2)-\sqrt{2} g(0) \\
& \lambda g(2)=\left[L_{+} g\right](2)=g(2)-g(1)
\end{aligned}
$$

- Matrix form: Reading off coefficients gives

$$
\lambda g=L_{+} g, \quad L_{+}=\left(\begin{array}{ccc}
2 & -\sqrt{2} & 0 \\
-\sqrt{2} & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

- Spectrum: $\sigma\left(L_{+}\right)=\left\{0, \frac{1}{2}(5-\sqrt{5}), \frac{1}{2}(5+\sqrt{5})\right\}$

Simple example - Part I

- Isolate even functions: Modify eigenvalue equation with information of trivial representation $f(x)=f(-x)$

$$
\begin{aligned}
& \lambda g(0)=\left[L_{+} g\right](0)=2 g(0)-\sqrt{2} g(1) \\
& \lambda g(1)=\left[L_{+} g\right](1)=2 g(1)-g(2)-\sqrt{2} g(0) \\
& \lambda g(2)=\left[L_{+} g\right](2)=g(2)-g(1)
\end{aligned}
$$

- Matrix form: Reading off coefficients gives

$$
\lambda g=L_{+} g, \quad L_{+}=\left(\begin{array}{ccc}
2 & -\sqrt{2} & 0 \\
-\sqrt{2} & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

- Spectrum: $\sigma\left(L_{+}\right)=\left\{0, \frac{1}{2}(5-\sqrt{5}), \frac{1}{2}(5+\sqrt{5})\right\}$

Simple example - Part I

- Isolate even functions: Modify eigenvalue equation with information of trivial representation $f(x)=f(-x)$

$$
\begin{aligned}
& \lambda g(0)=\left[L_{+} g\right](0)=2 g(0)-\sqrt{2} g(1) \\
& \lambda g(1)=\left[L_{+} g\right](1)=2 g(1)-g(2)-\sqrt{2} g(0) \\
& \lambda g(2)=\left[L_{+} g\right](2)=g(2)-g(1)
\end{aligned}
$$

- Matrix form: Reading off coefficients gives

$$
\lambda g=L_{+} g, \quad L_{+}=\left(\begin{array}{ccc}
2 & -\sqrt{2} & 0 \\
-\sqrt{2} & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

- Spectrum: $\sigma\left(L_{+}\right)=\left\{0, \frac{1}{2}(5-\sqrt{5}), \frac{1}{2}(5+\sqrt{5})\right\}$

Simple example - Part II

- Alternative viewpoint: Take a basis of even/odd vectors

$$
\Theta_{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
\sqrt{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \Theta_{-}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & -1 \\
-1 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

- Conjugate with original operator: Then we have $L_{ \pm}=\Theta_{ \pm}^{*} L \Theta_{ \pm}$, i.e.

$$
\Theta_{+}^{*} L \Theta_{+}=\left(\begin{array}{ccc}
2 & -\sqrt{2} & 0 \\
-\sqrt{2} & 2 & -1 \\
0 & -1 & 1
\end{array}\right), \quad \Theta_{-} L \Theta_{-}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)
$$

- Block diagonalisation: $Z=\left(\Theta_{+} \Theta_{-}\right)$, then

$$
Z^{*} \pi(r) Z=\operatorname{diag}(1,1,1,-1,-1), \quad Z^{*} L Z=L_{+} \oplus L_{-}
$$

Simple example - Part II

- Conjugate with original operator: Then we have $L_{ \pm}=\Theta_{ \pm}^{*} L \Theta_{ \pm}$, i.e.

$$
\Theta_{+}^{*} L \Theta_{+}=\left(\begin{array}{ccc}
2 & -\sqrt{2} & 0 \\
-\sqrt{2} & 2 & -1 \\
0 & -1 & 1
\end{array}\right), \quad \Theta_{-} L \Theta_{-}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)
$$

- Unitary equivalence: Take any unitary matrix, then following also valid

$$
\Theta_{ \pm} \mapsto \Theta_{ \pm} U \quad, L_{ \pm} \mapsto U^{*} L_{ \pm} U
$$

- The question: Given unitary invariance, for arbitrary symmetries,

How do we consistently choose Θ ?

Motivations and background

- Isospectrality: [Sunada '85, Gordon, Webb \& Wolpert '92]

Quotient graphs are isospectral if

$$
\operatorname{Ind}_{H_{1}}^{G}(\text { triv }) \cong \operatorname{Ind}_{H_{2}}^{G}(\text { triv })
$$

- Isospectrality in discrete graphs: [Brooks '99, Halbeisen \& Hungerbühler '99]

Motivations and background

- Obtaining quotients with different representations: Generalisation quotients isospectral if $\operatorname{Ind}_{H_{1}}^{G}\left(\rho_{1}\right) \cong \operatorname{Ind}_{H_{2}}^{G}\left(\rho_{2}\right)$ [Band, Parzanchevski \& Ben-Shach '09]

- Spectral computation in transitive graphs: [Chung \& Sternberg '92]

8

Questions arising

- Spectral interpretation: [Band, Parzanchevski \& Ben-Shach '09] - A quotient operator is any operator Op such that

$$
\mathbf{E}_{\lambda}^{\widetilde{O p}} \cong \operatorname{Hom}_{G}\left(V_{\rho}, \mathbf{E}_{\lambda}^{\mathrm{Op}_{\mathrm{p}}}\right)
$$

Works for self-adjoint operators - what about other types?

- Fixed points: [Halbeisen \& Hungerbühler '99] - Extend to other representations, remove fixed point conditions
- Transitive graphs: [Chung \& Sternberg '92] - What about non-transitive graphs?

Representation theory

- Symmetry: We say that a finite-dimensional operator Op is π-symmetric if

$$
\pi(g) \mathrm{Op}=\mathrm{Op} \pi(g) \quad \forall g \in G
$$

Assume $\pi(g)$ to be permutation matrices.

- Representations: Vectors transform in following manner

$$
\begin{aligned}
& \quad\left[\pi(g) \phi_{k}\right](x)=\phi_{k}\left(g^{-1} x\right)=\sum_{l=1}^{r} \phi_{l}(x) \rho(g)_{l k} \quad \forall g \in G, k=1, \ldots, r \\
& \rho\left(g_{1}\right) \rho\left(g_{2}\right)=\rho\left(g_{1} g_{2}\right) .
\end{aligned}
$$

- Hom space: We denote by $\operatorname{Hom}_{G}\left(V_{\rho}, V_{\pi}\right)$ the space of all $\phi: V_{\rho} \rightarrow V_{\pi}$ such that

$$
\pi(g) \phi=\phi \rho(g) \quad \forall g \in G
$$

Constructing a new definition

- Vectorisation: Introduce procedure vec : $M_{n \times m}(\mathbb{C}) \rightarrow \mathbb{C}^{n m}$, e.g.

$$
\operatorname{vec}\left(\left(\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right)\right)=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
b_{1} \\
b_{2}
\end{array}\right)
$$

- Kernel space: Applying vec gives $\left(\mathbf{I}_{r} \otimes \pi(g)\right) \operatorname{vec}(\phi)=\left(\rho(g)^{T} \otimes \mathbf{I}_{p}\right) \operatorname{vec}(\phi)$

$$
\mathcal{K}_{G}(\rho, \pi)=\bigcap_{g \in G} \operatorname{ker}\left[\mathbf{I}_{r} \otimes \pi(g)-\rho(g)^{T} \otimes \mathbf{I}_{p}\right] .
$$

Thus $\psi=\operatorname{vec}(\phi) \in \mathcal{K}_{G}(\rho, \pi) \Longleftrightarrow \phi \in \operatorname{Hom}_{G}\left(V_{\rho}, V_{\pi}\right)$.

- Quotient operator: Let Op be π-symmetric and Θ a basis for $\mathcal{K}_{G}(\rho, \pi)$, then

$$
\mathrm{Op}_{\rho}:=\Theta^{*}\left[\mathbf{I}_{\mathrm{r}} \otimes \mathrm{Op}\right] \Theta
$$

Properties of quotient operator

$$
\mathrm{Op}_{\rho}:=\Theta^{*}\left[\mathbf{I}_{r} \otimes \mathrm{Op}\right] \Theta
$$

- Operator type: One may choose any operator Op, only requirement is π-symmetric.
- Decomposition: If $R \cong \bigoplus \rho$ then $\mathrm{Op}_{R} \cong \bigoplus \mathrm{Op}_{\rho}$. In particular, if ρ are irreps of G, then

$$
\mathrm{Op} \cong \bigoplus_{\rho}\left[\mathbf{I}_{\operatorname{deg} \rho} \otimes \mathrm{Op}_{\rho}\right]
$$

- Normality: If $\mathrm{Op}^{*} \mathrm{Op}=\mathrm{Op} \mathrm{Op}^{*}$ then $\mathrm{Op}_{\rho}^{*} \mathrm{Op}_{\rho}=\mathrm{Op}_{\rho} \mathrm{Op}_{\rho}^{*}$.
- Spectral property: For any Op we now have $\mathbf{E}_{\lambda}^{\mathrm{Op}} \cong \operatorname{Hom}_{G}\left(V_{\rho}, \mathbf{E}_{\lambda}^{\mathrm{Op}}\right)$
- Unitary equivalence: Choosing a different basis $\widetilde{\Theta}=\Theta \cup$ leads to equivalent operator.

Choosing a basis

- Orbits: Let $\mathcal{P}=\{1, \ldots, p\}$ be set of points. Then orbit of i is

$$
O_{i}:=\{j \in \mathcal{P}: \exists g \in G \text { s.t. } i=g j\} .
$$

Then fundamental domain a set of one representative from each orbit, $\mathcal{D}=\{1, \ldots,|\mathcal{D}|\}$.

- Example: Line graph on 5 vertices

$$
O_{1}=\{1,5\}, \quad O_{2}=\{2,4\}, \quad O_{3}=\{3\}
$$

$$
\mathcal{D}=\{1,2,3\}
$$

Choosing a basis

- Orbits: Let $\mathcal{P}=\{1, \ldots, p\}$ be set of points. Then orbit of i is

$$
O_{i}:=\{j \in \mathcal{P}: \exists g \in G \text { s.t. } i=g j\} .
$$

Then fundamental domain a set of one representative from each orbit, $\mathcal{D}=\{1, \ldots,|\mathcal{D}|\}$.

- Example: Line graph on 5 vertices

$$
O_{1}=\{1,5\}, \quad O_{2}=\{2,4\}, \quad O_{3}=\{3\}
$$

$$
\mathcal{D}=\{1,2,3\}
$$

Choosing a basis

- Orbits: Let $\mathcal{P}=\{1, \ldots, p\}$ be set of points. Then orbit of i is

$$
O_{i}:=\{j \in \mathcal{P}: \exists g \in G \text { s.t. } i=g j\} .
$$

Then fundamental domain a set of one representative from each orbit, $\mathcal{D}=\{1, \ldots,|\mathcal{D}|\}$.

- Example: Line graph on 5 vertices

$$
O_{1}=\{1,5\}, \quad O_{2}=\{2,4\}, \quad O_{3}=\{3\}
$$

$$
\mathcal{D}=\{1,2,3\}
$$

Choosing a basis

- Orbits: Let $\mathcal{P}=\{1, \ldots, p\}$ be set of points. Then orbit of i is

$$
O_{i}:=\{j \in \mathcal{P}: \exists g \in G \text { s.t. } i=g j\} .
$$

Then fundamental domain a set of one representative from each orbit, $\mathcal{D}=\{1, \ldots,|\mathcal{D}|\}$.

- Example: Line graph on 5 vertices

$$
O_{1}=\{1,5\}, \quad O_{2}=\{2,4\}, \quad O_{3}=\{3\}
$$

$$
\mathcal{D}=\{1,2,3\}
$$

Choosing a basis

- Orbits: Let $\mathcal{P}=\{1, \ldots, p\}$ be set of points. Then orbit of i is

$$
O_{i}:=\{j \in \mathcal{P}: \exists g \in G \text { s.t. } i=g j\} .
$$

Then fundamental domain a set of one representative from each orbit, $\mathcal{D}=\{1, \ldots,|\mathcal{D}|\}$.

- Example: Line graph on 5 vertices

$$
O_{1}=\{1,5\}, \quad O_{2}=\{2,4\}, \quad O_{3}=\{3\}
$$

$$
\mathcal{D}=\{1,2,3\}
$$

Choosing a basis

Theorem (J., Band, Berkolaiko, Liu)
Let columns of matrix Θ_{i} be an orthonormal basis for

$$
\mathcal{K}_{G}^{i}(\rho, \pi):=K_{G}(\rho, \pi) \cap\left[V_{\rho} \otimes X_{i}\right], \quad X_{i}:=\operatorname{span}\left\{\mathbf{e}_{j}: j \in O_{i}\right\}
$$

Then columns of $\Theta=\left(\Theta_{1} \ldots \Theta_{|\mathcal{D}|}\right)$ form orthonormal basis for $\mathcal{K}_{G}(\pi, \rho)$.

- Example: Line graph on 5 vertices, $\mathcal{K}(\pm, \pi)=\operatorname{ker}\left[\pi(r) \mp \mathbf{I}_{5}\right]$

$$
\Theta_{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \sqrt{2} \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \Theta_{-}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right),
$$

Choosing a basis

Theorem (J., Band, Berkolaiko, Liu)
Let columns of matrix Θ_{i} be an orthonormal basis for

$$
\mathcal{K}_{G}^{i}(\rho, \pi):=K_{G}(\rho, \pi) \cap\left[V_{\rho} \otimes X_{i}\right], \quad X_{i}:=\operatorname{span}\left\{\mathbf{e}_{j}: j \in O_{i}\right\}
$$

Then columns of $\Theta=\left(\Theta_{1} \ldots \Theta_{|\mathcal{D}|}\right)$ form orthonormal basis for $\mathcal{K}_{G}(\pi, \rho)$.

- Example: Line graph on 5 vertices, $\mathcal{K}^{1}(\pm, \pi)=\operatorname{ker}\left[\pi(r) \mp \mathbf{I}_{5}\right] \cap X_{1}$

$$
\Theta_{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \sqrt{2} \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \Theta_{-}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right),
$$

Choosing a basis

Theorem (J., Band, Berkolaiko, Liu)
Let columns of matrix Θ_{i} be an orthonormal basis for

$$
\mathcal{K}_{G}^{i}(\rho, \pi):=K_{G}(\rho, \pi) \cap\left[V_{\rho} \otimes X_{i}\right], \quad X_{i}:=\operatorname{span}\left\{\mathbf{e}_{j}: j \in O_{i}\right\}
$$

Then columns of $\Theta=\left(\Theta_{1} \ldots \Theta_{|\mathcal{D}|}\right)$ form orthonormal basis for $\mathcal{K}_{G}(\pi, \rho)$.

- Example: Line graph on 5 vertices, $\mathcal{K}^{2}(\pm, \pi)=\operatorname{ker}\left[\pi(r) \mp \mathbf{I}_{5}\right] \cap X_{2}$

$$
\Theta_{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \sqrt{2} \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \Theta_{-}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right)
$$

Choosing a basis

Theorem (J., Band, Berkolaiko, Liu)
Let columns of matrix Θ_{i} be an orthonormal basis for

$$
\mathcal{K}_{G}^{i}(\rho, \pi):=K_{G}(\rho, \pi) \cap\left[V_{\rho} \otimes X_{i}\right], \quad X_{i}:=\operatorname{span}\left\{\mathbf{e}_{j}: j \in O_{i}\right\}
$$

Then columns of $\Theta=\left(\Theta_{1} \ldots \Theta_{|\mathcal{D}|}\right)$ form orthonormal basis for $\mathcal{K}_{G}(\pi, \rho)$.

- Example: Line graph on 5 vertices, $\mathcal{K}^{3}(\pm, \pi)=\operatorname{ker}\left[\pi(r) \mp \mathbf{I}_{5}\right] \cap X_{3}$

$$
\Theta_{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \sqrt{2} \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \Theta_{-}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right)
$$

Form of quotient operator

Theorem (J., Band, Berkolaiko, Liu)
Choose Θ as in previous theorem, then quotient operator will consist of blocks of the form

$$
\left[\mathrm{Op}_{\rho}\right]_{i j}=\frac{1}{\sqrt{\left|G_{i}\right|\left|G_{j}\right|}} \sum_{g \in G}\left(\Phi_{i}^{*} \bar{\rho}(g) \Phi_{j}\right) \mathrm{Op}_{i, g j},
$$

where $G_{i}:=\{g \in G: g i=i\}$ is fixed point group of i and Φ_{i} an orthonormal basis for

$$
\bigcap_{g \in G_{i}} \operatorname{ker}\left[\mathbf{I}_{r}-\rho(g)\right] .
$$

- Structure preservation: Connections of original operator are preserved in following sense
$\circ\left[0 p_{\rho}\right]_{i, j} \neq 0$ only if \exists elements $k \in O_{i}, l \in O_{j}$ s.t. $O p_{k l} \neq 0$.
- $\left[\mathrm{Op}_{\rho}\right]_{i, j}$ does not depend on elements from other orbits.

Example 2 - higher dimensional irreps

- Reducing points: Take tetrahedron, invariant under S_{4}. Two orbits given by $O_{\bullet}=\{1,2,3,4\}$ and $O_{\times}=\{5, \ldots, 16\}$.

$$
H_{i j}= \begin{cases}a & \bullet \sim \times \\ b & \times \sim \times \\ V_{\bullet} & \bullet=\bullet \\ V_{x} & \times=\times\end{cases}
$$

- Irreducible representation: 'Standard' representation of S_{4}, generated by

$$
R((12))=\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), R((23))=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), R((34))=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Action: Take $\psi \in \mathcal{K}_{G}(R, \pi)$, with $\psi(x)=\left(\phi_{1}(x), \phi_{2}(x), \phi_{3}(x)\right)^{T}$

$$
[\pi(g) \psi](x)=R(g)^{T} \psi(x)
$$

Example 2 - higher dimensional irreps

- Fixed points: Take for example, $G_{\bullet}=S_{3}$ (exchange 2, 3, 4). Then

$$
\psi(\bullet)=\psi\left(g^{-1} \bullet\right)=R(g)^{T} \psi(\bullet) \quad \forall g \in G_{\bullet}
$$

Therefore $\psi(\bullet) \in \bigcap_{g \in G_{\bullet}} \operatorname{ker}\left[\mathbf{I}_{r}-\bar{R}(g)\right]$.

- Quotient operator: We have $\operatorname{dim}\left(\mathcal{K}_{G}^{\bullet}(\rho, \pi)\right)=1$ and $\operatorname{dim}\left(\mathcal{K}_{G}^{\times}(\rho, \pi)\right)=2$, leading to

$$
H_{R}=\left(\begin{array}{ccc}
V_{\bullet} & a & a \sqrt{2} \\
a & V_{\times}+b & 0 \\
a \sqrt{2} & 0 & V_{\times}-b
\end{array}\right)
$$

Example 3 - Non-normal operators

- Directed graphs: Take following adjacency matrix

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

- Form quotient operator: Fixed point group $G_{2}=\mathbb{Z}_{2}$, so
$\left[A_{\text {triv }}\right]_{32}=\frac{1}{\sqrt{2}}\left(A_{32}+A_{42}\right)=\sqrt{2}$, and in full

$$
A_{\text {triv }}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & \sqrt{2} & 0
\end{array}\right)
$$

- Spectrum: There is (non-unitary) Q such that $Q^{-1} \operatorname{diag}(0,1,-1) Q=A_{\text {triv. }}$.

Conclusions and outlook

- Summary:
- New definition for finite-dimensional quotient operators
- Generalises previous notions from isospectraility
- Can show the choice of basis that leads to structure preservation
- Further research:
- Is there an analogous spectral condition?
- What about antiunitary symmetries?
- Cellular graphs?

