Kac regular sets in geometry and probability

Batu Güneysu

Institut für Mathematik Humboldt-Universität zu Berlin

Analysis and Geometry on Graphs and Manifolds

August 1, 2017

Introduction Schrödinger bundles Main results

Joint work with Francesco Bei (University of Lyon).

$$W_0^{1,2}(\Omega) = \{ f|_{\Omega} : f \in W_0^{1,2}(M), \ f = 0 \text{ a.e. in } M \setminus \Omega \}$$
? (1)

- We will see in a moment that Kac regularity is equivalent to realizing Dirichlet boundary conditions by the potential $\infty \cdot 1_{M \setminus \Omega}$, and also to a property of Brownian motion.
- $W_0^{1,2}(\Omega)$ is the form domain of the Dirichlet realization of $-\Delta$ in $L^2(\Omega) \leadsto$ we can replace $-\Delta$ with $-\Delta + V$ and ask the same question again.
- More generally, we can also consider covariant Schrödinger operators (magnetic Schrödinger operators, squares of Dirac operators,...)

$$W_0^{1,2}(\Omega) = \{ f|_{\Omega} : f \in W_0^{1,2}(M), \ f = 0 \text{ a.e. in } M \setminus \Omega \}$$
? (1)

- ullet We will see in a moment that Kac regularity is equivalent to realizing Dirichlet boundary conditions by the potential $\infty \cdot 1_{M \setminus \Omega}$, and also to a property of Brownian motion.
- $W_0^{1,2}(\Omega)$ is the form domain of the Dirichlet realization of $-\Delta$ in $L^2(\Omega) \leadsto$ we can replace $-\Delta$ with $-\Delta + V$ and ask the same question again.
- More generally, we can also consider covariant Schrödinger operators (magnetic Schrödinger operators, squares of Dirac operators,...)

$$W_0^{1,2}(\Omega) = \{ f|_{\Omega} : f \in W_0^{1,2}(M), \ f = 0 \text{ a.e. in } M \setminus \Omega \}$$
? (1)

- We will see in a moment that Kac regularity is equivalent to realizing Dirichlet boundary conditions by the potential $\infty \cdot 1_{M \setminus \Omega}$, and also to a property of Brownian motion.
- $W_0^{1,2}(\Omega)$ is the form domain of the Dirichlet realization of $-\Delta$ in $L^2(\Omega) \rightsquigarrow$ we can replace $-\Delta$ with $-\Delta + V$ and ask the same question again.
- More generally, we can also consider covariant Schrödinger operators (magnetic Schrödinger operators, squares of Dirac operators,...)

$$W_0^{1,2}(\Omega) = \{ f|_{\Omega} : f \in W_0^{1,2}(M), \ f = 0 \text{ a.e. in } M \setminus \Omega \}$$
? (1)

- We will see in a moment that Kac regularity is equivalent to realizing Dirichlet boundary conditions by the potential $\infty \cdot 1_{M \setminus \Omega}$, and also to a property of Brownian motion.
- $W_0^{1,2}(\Omega)$ is the form domain of the Dirichlet realization of $-\Delta$ in $L^2(\Omega) \leadsto$ we can replace $-\Delta$ with $-\Delta + V$ and ask the same question again.
- More generally, we can also consider covariant Schrödinger operators (magnetic Schrödinger operators, squares of Dirac operators,...)

- Herbst/Zhao have shown that for $M=\mathbb{R}^m$ and V=0 that Ω 's with $\partial\Omega$ having the segment property are Kac regular, showing that natural Kac regularity results should depend on the local regularity of $\partial\Omega$.
- Hedberg & Stollmann: There exists a Kac irregular set $\Omega \subset \mathbb{R}^m$ with $\mathbb{R}^m \setminus \Omega$ compact and equal to the closure of its interior (disproving a conjecture by Simon).
- If one replaces 'a.e.' with 'q.e.', the equality of Sobolev spaces is true for arbitrary Ω 's (Adams/Hedberg for $M = \mathbb{R}^m$) and thus does not see anything from the local regularity of $\partial\Omega$.
- Hopefully our paper provides the first systematic treatment of Kac regularity for (covariant) Schrödinger operators (on manifolds).

- Herbst/Zhao have shown that for $M=\mathbb{R}^m$ and V=0 that Ω 's with $\partial\Omega$ having the segment property are Kac regular, showing that natural Kac regularity results should depend on the local regularity of $\partial\Omega$.
- Hedberg & Stollmann: There exists a Kac irregular set $\Omega \subset \mathbb{R}^m$ with $\mathbb{R}^m \setminus \Omega$ compact and equal to the closure of its interior (disproving a conjecture by Simon).
- If one replaces 'a.e.' with 'q.e.', the equality of Sobolev spaces is true for arbitrary Ω 's (Adams/Hedberg for $M = \mathbb{R}^m$) and thus does not see anything from the local regularity of $\partial\Omega$.
- Hopefully our paper provides the first systematic treatment of Kac regularity for (covariant) Schrödinger operators (on manifolds).

- Herbst/Zhao have shown that for $M=\mathbb{R}^m$ and V=0 that Ω 's with $\partial\Omega$ having the segment property are Kac regular, showing that natural Kac regularity results should depend on the local regularity of $\partial\Omega$.
- Hedberg & Stollmann: There exists a Kac irregular set $\Omega \subset \mathbb{R}^m$ with $\mathbb{R}^m \setminus \Omega$ compact and equal to the closure of its interior (disproving a conjecture by Simon).
- If one replaces 'a.e.' with 'q.e.', the equality of Sobolev spaces is true for arbitrary Ω 's (Adams/Hedberg for $M=\mathbb{R}^m$) and thus does not see anything from the local regularity of $\partial\Omega$.
- Hopefully our paper provides the first systematic treatment of Kac regularity for (covariant) Schrödinger operators (on manifolds).

- Herbst/Zhao have shown that for $M=\mathbb{R}^m$ and V=0 that Ω 's with $\partial\Omega$ having the segment property are Kac regular, showing that natural Kac regularity results should depend on the local regularity of $\partial\Omega$.
- Hedberg & Stollmann: There exists a Kac irregular set $\Omega \subset \mathbb{R}^m$ with $\mathbb{R}^m \setminus \Omega$ compact and equal to the closure of its interior (disproving a conjecture by Simon).
- If one replaces 'a.e.' with 'q.e.', the equality of Sobolev spaces is true for arbitrary Ω 's (Adams/Hedberg for $M=\mathbb{R}^m$) and thus does not see anything from the local regularity of $\partial\Omega$.
- Hopefully our paper provides the first systemetic treatment of Kac regularity for (covariant) Schrödinger operators (on manifolds).

Definition

A semibounded Schrödinger bundle over M is a datum $(E, \nabla, V) \rightarrow M$ with

- ∇ a metric covariant derivative on the complex metric vector bundle E → M,
- $V: M \to \operatorname{End}(E)$ is an L^2_{loc} potential,

such that (for simplicity)

$$\langle \nabla f, \nabla f \rangle + \langle Vf, f \rangle \ge 0$$
 for all $f \in C_c^{\infty}(M, E)$.

- Given an open subset $\Omega \subset M$ let $H_{\Omega}(\nabla, V)$ denote the Friedrichs realization of $\nabla^{\dagger}\nabla + V$ in $L^{2}(\Omega, E)$.
- $H_{\Omega}(\nabla, V)$ is $\nabla^{\dagger}\nabla + V$ with Dirichlet boundary conditions on Ω . Set

$$P_{\Omega}: L^2(M, E) \longrightarrow L^2(\Omega, E), \quad P_{\Omega}f := f|_{\Omega}$$

Definition

A semibounded Schrödinger bundle over M is a datum $(E, \nabla, V) \rightarrow M$ with

- ∇ a metric covariant derivative on the complex metric vector bundle E → M,
- ullet $V:M o \mathrm{End}(E)$ is an L^2_{loc} potential,

such that (for simplicity)

$$\langle \nabla f, \nabla f \rangle + \langle Vf, f \rangle \ge 0$$
 for all $f \in C_c^{\infty}(M, E)$.

- Given an open subset $\Omega \subset M$ let $H_{\Omega}(\nabla, V)$ denote the Friedrichs realization of $\nabla^{\dagger}\nabla + V$ in $L^{2}(\Omega, E)$.
- $H_{\Omega}(\nabla, V)$ is $\nabla^{\dagger}\nabla + V$ with Dirichlet boundary conditions on Ω . Set

$$P_{\Omega}: L^{2}(M, E) \longrightarrow L^{2}(\Omega, E), \quad P_{\Omega}f := f|_{\Omega}$$

• Define $W_0^{1,2}(\Omega, E; \nabla, V) \subset L^2(\Omega, E)$ to be the closure of $C_c^{\infty}(\Omega, E)$ w.r.t. 'Sobolev norm'

$$||f||_{\nabla,V}^2 := ||f||^2 + ||\nabla f||^2 + \langle Vf, f \rangle.$$

- $W_0^{1,2}(\Omega, E; \nabla, V)$ is the form domain of $H_{\Omega}(\nabla, V)$.
- ullet Which properties of Ω imply in the validity of

$$W_0^{1,2}(\Omega, E; \nabla, V) = \{ f|_{\Omega} : f \in W_0^{1,2}(M, E; \nabla, V), f|_{M \setminus \Omega} = 0 \text{ a.e.} \} ?$$
(2)

It is elementary to see that ' \subset ' in (2) is true for all Ω 's.

• Define $W_0^{1,2}(\Omega, E; \nabla, V) \subset L^2(\Omega, E)$ to be the closure of $C_c^{\infty}(\Omega, E)$ w.r.t. 'Sobolev norm'

$$||f||_{\nabla,V}^2 := ||f||^2 + ||\nabla f||^2 + \langle Vf, f \rangle.$$

- $W_0^{1,2}(\Omega, E; \nabla, V)$ is the form domain of $H_{\Omega}(\nabla, V)$.
- ullet Which properties of Ω imply in the validity of

$$W_0^{1,2}(\Omega, E; \nabla, V) = \{ f|_{\Omega} : f \in W_0^{1,2}(M, E; \nabla, V), f|_{M \setminus \Omega} = 0 \text{ a.e.} \} ?$$
(2)

It is elementary to see that ' \subset ' in (2) is true for all Ω 's.

• Define $W_0^{1,2}(\Omega, E; \nabla, V) \subset L^2(\Omega, E)$ to be the closure of $C_c^{\infty}(\Omega, E)$ w.r.t. 'Sobolev norm'

$$||f||_{\nabla,V}^2 := ||f||^2 + ||\nabla f||^2 + \langle Vf, f \rangle.$$

- $W_0^{1,2}(\Omega, E; \nabla, V)$ is the form domain of $H_{\Omega}(\nabla, V)$.
- ullet Which properties of Ω imply in the validity of

$$W_0^{1,2}(\Omega, E; \nabla, V) = \{ f|_{\Omega} : f \in W_0^{1,2}(M, E; \nabla, V), f|_{M \setminus \Omega} = 0 \text{ a.e.} \}?$$
(2)

It is elementary to see that ' \subset ' in (2) is true for all Ω 's.

Examples:

• Magnetic Schrödinger operators: $\nabla = d + \sqrt{-1}\alpha$ with α a 1-form on M, $V: M \to \mathbb{R}$ in L^2_{loc} , on the trivial line bundle over M, identifying sections with functions $M \to \mathbb{C}$. For $\alpha = 0$ we recover Schrödinger operators:

Notation: $H_{\Omega}(V) := H_{\Omega}(d + \sqrt{i}\alpha, V)|_{\alpha=0}$ with form domain $W_0^{1,2}(\Omega; V) \subset L^2(\Omega)$; $H_{\Omega} := H_{\Omega}(V)|_{V=0}$ with form domain $W_0^{1,2}(\Omega) \subset L^2(\Omega)$.

• Given a Dirac bundle $(E, c, \nabla) \to M$ with its Dirac operator $D(c, \nabla)$. Lichnerowicz formula:

$$V(c,\nabla) := D(c,\nabla)^2 - \nabla^{\dagger}\nabla : M \to \operatorname{End}(E)$$

is a (smooth) potential \rightsquigarrow the semibounded Schrödinger bundle $(E, \nabla, V(c, \nabla)) \rightarrow M$.

Examples:

• Magnetic Schrödinger operators: $\nabla = d + \sqrt{-1}\alpha$ with α a 1-form on M, $V: M \to \mathbb{R}$ in L^2_{loc} , on the trivial line bundle over M, identifying sections with functions $M \to \mathbb{C}$. For $\alpha = 0$ we recover Schrödinger operators:

Notation: $H_{\Omega}(V) := H_{\Omega}(d + \sqrt{i}\alpha, V)|_{\alpha=0}$ with form domain $W_0^{1,2}(\Omega; V) \subset L^2(\Omega)$; $H_{\Omega} := H_{\Omega}(V)|_{V=0}$ with form domain $W_0^{1,2}(\Omega) \subset L^2(\Omega)$.

• Given a Dirac bundle $(E, c, \nabla) \to M$ with its Dirac operator $D(c, \nabla)$. Lichnerowicz formula:

$$V(c,\nabla) := D(c,\nabla)^2 - \nabla^{\dagger}\nabla : M \to \operatorname{End}(E)$$

is a (smooth) potential \leadsto the semibounded Schrödinger bundle $(E, \nabla, V(c, \nabla)) \to M$.

W(M): Wiener space of continuous paths $\omega : [0, \infty) \to \hat{M} = M \cup \infty_M$, $\mathbb{X} : [0, \infty) \times W(M) \longrightarrow M$, $\mathbb{X}_t(\omega) := \omega(t)$,

 \mathbb{P}^x : Brownian motion measure on W(M) with $\mathbb{P}^x\{\mathbb{X}_0=x\}=1$.

If $\Omega \subset \hat{M}$ is an open set, then one calls

$$\begin{split} &\alpha_{\Omega} := \inf \left\{ t > 0 : \mathbb{X}_t \in M \setminus \Omega \right\} : W(M) \longrightarrow [0, \infty] \\ &\beta_{\Omega} := \inf \left\{ t > 0 : \int_0^t 1_{M \setminus \Omega}(\mathbb{X}_s) ds > 0 \right\} : W(M) \longrightarrow [0, \infty], \end{split}$$

the first exit time of $\mathbb X$ from Ω , resp. the first penetration time of $\mathbb X$ to $M\setminus\Omega$. Elementary:

$$\alpha_{\Omega} \le \beta_{\Omega},$$
 (3)

$$\{t < \alpha_{\Omega}\} = \{ \mathbb{X}_{s} \in \Omega \text{ for all } s \in [0, t] \}, \tag{4}$$

$$\{t < \beta_{\Omega}\} = \{\mathbb{X}_s \in \Omega \text{ for a.e. } s \in [0, t]\}$$
 (5)

Proposition (I.Herbst/Z.Zhao for \mathbb{R}^m ; F. Bei/B.G.)

Let $\Omega \subset M$ be an arbitrary open subset. The following properties are equivalent:

Ω is Kac regular, that is,

$$W_0^{1,2}(\Omega) = \{ f|_{\Omega} : f \in W_0^{1,2}(M), f|_{M \setminus \Omega} = 0 \text{ a.e. } \},$$
 (6)

- for all $x \in \Omega$ one has $\mathbb{P}^x \{ \alpha_{\Omega} = \min(\beta_{\Omega}, \alpha_{M}) \} = 1$,
- for all t > 0 one has

$$s - \lim_{n \to \infty} \exp(-tH_{M}(n1_{M \setminus \Omega})) = \exp(-tH_{\Omega})P_{\Omega}.$$
 (7)

The last condition means that Dirichlet boundary conditions on Ω are realized by means of the potential $V(x) := \infty \cdot 1_{M \setminus \Omega}$.

Theorem (F.Bei/B.G.)

Let Ω be an arbitrary open subset of M.

a) If Ω is Kac regular, then for every regular Schrödinger bundle $(E, \nabla, V) \to M$ one has

$$W_0^{1,2}(\Omega, E; \nabla, V) = \{f|_{\Omega} : f \in W_0^{1,2}(M, E; \nabla, V), f|_{M\setminus\Omega} = 0 \text{ a.e.}\},$$
 and

$$\mathrm{s-}\lim_{n\to\infty}\exp\big(-tH_M(\nabla,V+n\mathbf{1}_{M\setminus\Omega})\big)=\exp\big(-tH_\Omega(\nabla,V)\big)P_\Omega.$$

b) If Ω is Lipschitz exhaustable, in the sense that there exist $\Omega_n \subset \Omega$ relatively compact and open with Lipschitz boundary, such that $\Omega_n \nearrow \Omega$, $\overline{\Omega_n} \nearrow \overline{\Omega}$, then Ω is Kac regular.

Sketch of proof in the scalar case (= usual Schrödinger operators):

ullet For arbitrary Ω , the generator $\tilde{\mathcal{H}}_{\Omega}(V)$ of the semigroup

$$P_t f(x) = \int_{\{t < \min(\beta_{\Omega}, \alpha_M)\}} e^{-\int_0^t V(\mathbb{X}_s)} f(\mathbb{X}_t) dP^x$$

is induced by the restriction of form of $H_M(V)$ to the domain $\{f|_{\Omega}: f\in W^{1,2}_0(M;V), f|_{M\setminus\Omega}=0 \text{ a.e.}\}$

 \bullet For arbitrary Ω one has

$$\begin{split} & s - \lim_{n \to \infty} \exp \big(- t H_M(n \mathbb{1}_{M \setminus \Omega}) \big) = \exp \big(- t H_{\Omega} \big) P_{\Omega}, \\ & e^{-t H_{\Omega}(V)}(x) = \int_{\{t < \alpha_{\Omega}\}} f(\mathbb{X}_t) e^{-\int_0^t V(\mathbb{X}_s) ds} dP^x. \end{split}$$

• In the covariant case, one has to use the covariant Feynman-Kac formula; rather technical (no monotonicity).

• Lipschitz exhaustable sets are Kac regular: locally, use the existence of a Sobolev extension operator for bounded Lipschitz sets, so that

$$\mathbb{P}^{\mathsf{x}}\{\alpha_{\Omega_n} = \min(\beta_{\Omega_n}, \alpha_M)\} = 1 \quad \text{for all } n. \tag{8}$$

Then using $\alpha_{\Omega_n} \to \alpha_{\Omega}$ (requires $\Omega_n \to \Omega$) and $\beta_{\Omega_n} \to \beta_{\Omega}$ (requires $\Omega_n \to \Omega$ (uses $\overline{\Omega}_n \to \overline{\Omega}$), we can take $n \to \infty$ in (8), showing Kac regularity.

Remarks and outlook:

- Typical applications of Kac regularity: Uniqueness results for Laplace type equations.
- Ω is Lipschitz exhaustable, if $\partial \Omega$ is smooth.
- Conjecture: Ω is Lipschitz exhaustable, if $\partial\Omega$ has a locally Lipschitz boundary.
- Possibly nonlocal Dirichlet forms? \(\sim \) Adams/Hedberg

Introduction Schrödinger bundles Main results

Thank you for listening!