On semi-linear elliptic inequalities on Riemannian manifolds

Alexander Grigor'yan
Potsdam University, August 2017
Based on joint works with W.Hansen, I.Verbitsky, Y.Sun

Setup and problem statement

Let M be a connected Riemannian manifold, Δ - the Laplace-Beltrami operator on M.

Consider the equation

$$
-\Delta u+\Phi(x) u_{(\geq)}^{\sigma} f
$$

where $\Phi, f \in C(M), f \geq 0, \sigma>0$. Solution u should be non-negative and in $C^{2}(M)$.

$$
\text { Our goal: pointwise estimates of } u \text {. }
$$

We always assume that Δ has a positive Green function $G(x, y)$ on M, and use notation:

$$
G \varphi(x)=\int_{M} G(x, y) \varphi(y) d \mu(y)
$$

The estimates will be given in terms of the function

$$
h=G f .
$$

Let $f \not \equiv 0$ so that $h>0$. Assume in addition that $h<\infty$.

Linear case $\sigma=1$

W. Hansen-Z.Ma 1990, AG-W.Hansen 2008: if $\Phi \geq 0$ and

$$
-\Delta u+\Phi(x) u \geq f \quad \text { on } M,
$$

then

$$
u \geq h \exp \left(-\frac{1}{h} G(h \Phi)\right)
$$

where $h=G f$.
This implies the lower bound for the Green function G_{Φ} of $-\Delta+\Phi$:

$$
G_{\Phi}(x, y) \geq G(x, y) \exp \left(-\frac{\int_{M} G(x, z) G(z, y) \Phi(z) d \mu(z)}{G(x, y)}\right)
$$

In the case $\Phi \leq 0$ a similar estimate under additional assumptions was obtained by N.Kalton-I.Verbitsky 1999.

Main result

Theorem 1 (AG-I.Verbitsky, 2015) Let $u \geq 0$ solve $-\Delta u+\Phi u^{\sigma} \geq f$ in M. Set $h=G f$. Let $0<h<\infty$ and let $G\left(h^{\sigma} \Phi\right)$ be well defined.
(i) If $\sigma=1$ then

$$
\begin{equation*}
u \geq h \exp \left(-\frac{1}{h} G(h \Phi)\right) . \tag{1}
\end{equation*}
$$

(ii) If $\sigma>1$ then

$$
\begin{equation*}
u \geq \frac{h}{\left[1+(\sigma-1) \frac{1}{h} G\left(h^{\sigma} \Phi\right)\right]^{\frac{1}{\sigma-1}}} \tag{2}
\end{equation*}
$$

where the expression in square brackets is necessarily positive:

$$
\begin{equation*}
-(\sigma-1) G\left(h^{\sigma} \Phi\right)<h \tag{3}
\end{equation*}
$$

(iii) If $0<\sigma<1$ then

$$
\begin{equation*}
u \geq h\left[1-(1-\sigma) \frac{1}{h} G\left(1_{\{u>0\}} h^{\sigma} \Phi\right)\right]_{+}^{\frac{1}{1-\sigma}} \tag{4}
\end{equation*}
$$

Estimates with boundary condition

Fix Ω - a relatively compact domain in M with smooth boundary. It suffices to prove (1)-(4) in Ω with G_{Ω} instead of G and with $h=G_{\Omega} f$.

New problem: let $h \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be positive and superharmonic in Ω. Set $f=-\Delta h$ and assume that $u \in C^{2}(\Omega) \cap C(\bar{\Omega}), u \geq 0$, satisfies

$$
\begin{equation*}
-\Delta u+\Phi u^{\sigma} \geq f \quad \text { in } \Omega \quad \text { and } \quad u \geq h \quad \text { on } \partial \Omega \tag{5}
\end{equation*}
$$

Theorem 2 Under the above condition, we have:
(i) If $\sigma=1$ then $u \geq h \exp \left(-\frac{1}{h} G_{\Omega}(h \Phi)\right)$.
(ii) If $\sigma>1$ then

$$
u \geq \frac{h}{\left[1+(\sigma-1) \frac{1}{h} G_{\Omega}\left(h^{\sigma} \Phi\right)\right]^{\frac{1}{\sigma-1}}}
$$

where necessarily $-(\sigma-1) G_{\Omega}\left(h^{\sigma} \Phi\right)<h$.
(iii) If $0<\sigma<1$ then

$$
u \geq h\left[1-(1-\sigma) \frac{1}{h} G_{\Omega}\left(1_{\{u>0\}} h^{\sigma} \Phi\right)\right]_{+}^{\frac{1}{1-\sigma}}
$$

Approach to the proof of Theorem 2

Assume for simplicity that $u>0$ and $h>0$ in $\bar{\Omega}$. Assume first $h \equiv 1$. Then $f=-\Delta h=0$ and

$$
-\Delta u+\Phi u^{\sigma} \geq 0 \text { in } \Omega, \quad u \geq 1 \text { on } \partial \Omega .
$$

Fix a C^{2} function ϕ on (a interval of) \mathbb{R} with $\phi^{\prime}>0$ and set

$$
v=\phi^{-1}(u) .
$$

By the chain rule we have

$$
\Delta u=\Delta \phi(v)=\phi^{\prime}(v) \Delta v+\phi^{\prime \prime}(v)|\nabla v|^{2}
$$

whence

$$
\begin{equation*}
-\Delta v=\frac{\phi^{\prime \prime}|\nabla v|^{2}}{\phi^{\prime}}-\frac{\Delta u}{\phi^{\prime}} \geq \frac{\phi^{\prime \prime}}{\phi^{\prime}}|\nabla v|^{2}-\Phi \frac{\phi(v)^{\sigma}}{\phi^{\prime}(v)} \tag{6}
\end{equation*}
$$

Choose ϕ to solve the initial value problem

$$
\phi^{\prime}(s)=\phi^{\sigma}(s), \quad \phi(0)=1
$$

Hence, $\phi(s)=e^{s}$ if $\sigma=1$, and $\phi(s)=[(1-\sigma) s+1]^{\frac{1}{1-\sigma}}$ if $\sigma \neq 1$.

The inverse function ϕ^{-1} is always defined on $(0,+\infty)$.

The function ϕ is convex, and we obtain from (6)

$$
\begin{equation*}
-\Delta v \geq-\Phi \text { in } \Omega \tag{7}
\end{equation*}
$$

Since on $\partial \Omega$ we have $v=\phi^{-1}(u) \geq \phi^{-1}(1)=0$, it follows that

$$
v \geq-G_{\Omega} \Phi \text { in } \Omega
$$

and, hence,

$$
u \geq \phi\left(-G_{\Omega} \Phi\right) \quad \text { in } \Omega
$$

This yields the cases $(i)-($ iii $)$ of Theorem 2 in the case $h=1$.
Indeed, in the case $\sigma=1$ we have $\phi(s)=e^{s}$ and, hence,

$$
u \geq \exp \left(-G_{\Omega} \Phi\right)
$$

In the case $\sigma>1$ we have $\phi(s)=[(1-\sigma) s+1]^{-\frac{1}{\sigma-1}}$, which gives the estimate of (ii)

$$
u \geq \frac{1}{\left[1+(\sigma-1) G_{\Omega} \Phi\right]^{\frac{1}{\sigma-1}}}
$$

Similarly one treats the case $0<\sigma<1$.

For a general $h>0$, we use the h-transform of Δ in Ω :

$$
\Delta^{h}:=\frac{1}{h} \circ \Delta \circ h=\frac{1}{h^{2}} \operatorname{div}\left(h^{2} \nabla\right)+\frac{\Delta h}{h}=L+\frac{\Delta h}{h},
$$

where

$$
L=\frac{1}{h^{2}} \operatorname{div}\left(h^{2} \nabla\right)
$$

is the weighted Laplacian associated with measure $d \tilde{\mu}=h^{2} d \mu$.
For function $\tilde{u}=\frac{u}{h}$ we have

$$
-\Delta^{h} \tilde{u}=-\frac{1}{h} \Delta u \geq \frac{1}{h}\left(-\Phi u^{\sigma}+f\right)=-h^{\sigma-1} \Phi \tilde{u}^{\sigma}-\frac{\Delta h}{h} .
$$

Setting $\tilde{\Phi}=h^{\sigma-1} \Phi$, we obtain that \tilde{u} satisfies

$$
-\Delta^{h} \tilde{u}+\tilde{\Phi} \tilde{u}^{\sigma} \geq-\frac{\Delta h}{h} \text { in } \Omega, \quad \tilde{u} \geq 1 \text { on } \partial \Omega
$$

Now we use the same approach as in the case $h=1$, but for the operator Δ^{h} in place of Δ.

Set $v=\phi^{-1}(\tilde{u})=\phi^{-1}(u / h)$ and compute $\Delta^{h} v$ as in (6). For the part $L=\frac{1}{h^{2}} \operatorname{div}\left(h^{2} \nabla\right)$ of the operator Δ^{h}, computation is the same as for Δ. The part $\frac{\Delta h}{h}$ gives in the end an additional term so that instead of (7) we obtain

$$
-\Delta^{h} v \geq-\tilde{\Phi}+\left(\frac{\phi(v)-1}{\phi^{\prime}(v)}-v\right) \frac{\Delta h}{h}
$$

Multiplying by h, we obtain

$$
\begin{equation*}
-\Delta(h v) \geq-h^{\sigma} \Phi+\left(\frac{\phi(v)-1}{\phi^{\prime}(v)}-v\right) \Delta h \tag{8}
\end{equation*}
$$

The convexity of ϕ implies

$$
\begin{equation*}
\frac{\phi(s)-1}{\phi^{\prime}(s)}-s \leq 0 \tag{9}
\end{equation*}
$$

for any s in the domain of ϕ. Indeed, if $s>0$ then $\exists \xi \in[0, s]$ such that

$$
\frac{\phi(s)-1}{s}=\frac{\phi(s)-\phi(0)}{s}=\phi^{\prime}(\xi) \leq \phi^{\prime}(s),
$$

whence (9) follows. If $s<0$ then $\xi \in[s, 0]$ such that

$$
\frac{\phi(s)-1}{s}=\frac{\phi(s)-\phi(0)}{s}=\phi^{\prime}(\xi) \geq \phi^{\prime}(s),
$$

which again implies (9) since $s<0$.
Since $\Delta h \leq 0$, we obtain

$$
\left(\frac{\phi(v)-1}{\phi^{\prime}(v)}-v\right) \Delta h \geq 0
$$

and therefore by (8)

$$
-\Delta(h v) \geq-h^{\sigma} \Phi \text { in } \Omega
$$

On $\partial \Omega$ we have $v=\phi^{-1}(u / h) \geq \phi^{-1}(1)=0$, which implies

$$
h v \geq-G_{\Omega}\left(h^{\sigma} \Phi\right) \quad \text { in } \Omega
$$

Dividing by h and applying ϕ, we obtain

$$
u \geq \phi\left(-\frac{1}{h} G_{\Omega}\left(h^{\sigma} \Phi\right)\right) \text { in } \Omega .
$$

Existence of positive solutions

Let us ask for which values $\sigma>1$ the inequality

$$
\begin{equation*}
\Delta u+u^{\sigma} \leq 0 \tag{10}
\end{equation*}
$$

has a positive solution u on M (the case of $\Phi \equiv-1$). For example, in \mathbb{R}^{n} with $n \leq 2$ any non-negative solution of (10) is 0 while for the case $n>2$ (10) has a positive solution if and only if

$$
\sigma>\frac{n}{n-2}
$$

(Mitidieri and Pohozaev, 1998).
Let $d(x, y)$ be a distance function on M, not necessarily geodesic, but such that the metric balls

$$
B(x, r)=\{y \in M, \quad d(x, y)<r\} .
$$

are precompact open subsets of M. Set

$$
V(x, r)=\mu(B(x, r))
$$

Theorem 3 (AG - Yuhua Sun, 2017) Assume that, for some $x_{0} \in M$,

$$
\begin{equation*}
V\left(x_{0}, r\right) \simeq r^{\alpha} \text { for large } r \tag{V}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x, y) \simeq d(x, y)^{-\gamma} \text { for large } d(x, y) \tag{G}
\end{equation*}
$$

where $\alpha>\gamma>0$. Then, for any σ satisfying

$$
1<\sigma \leq \frac{\alpha}{\gamma}
$$

the inequality

$$
\begin{equation*}
\Delta u+u^{\sigma} \leq 0 \tag{11}
\end{equation*}
$$

has no positive solution in any exterior domain of M.
If in addition d is the geodesic distance, M has bounded geometry, and (V) holds for all $x_{0} \in M$, then, for any

$$
\sigma>\frac{\alpha}{\gamma}
$$

the inequality (11) has a positive solution on M.
Hence, the critical value of the exponent σ is equal to $\frac{\alpha}{\gamma}$.

Example 1

Let Γ be an infinite connected graph with a uniformly bounded degree. Let $d(x, y)$ be the graph distance on Γ and $V(x, r)$ - the volume function. Let the discrete Laplace operator on Γ have a positive Green function $G(x, y)$.

If Γ satisfies conditions (V) and (G) for some α and γ then we construct a manifold with the same properties by inflating Γ, that is, by replacing the edges of Γ by 2-dim cylinders. Since M has bounded geometry, the both parts of Theorem 3 apply in this case.
M.Barlow constructed in 2004 a fractal graph satisfying (V) and (G), for any pair (α, γ) such that

$$
0<\gamma \leq \alpha-2
$$

Since γ can be arbitrarily small, the critical value $\frac{\alpha}{\gamma}$ can be arbitrarily large, unlike the Euclidean critical value $\frac{n}{n-2}$.

Example 2

Assume that $G(x, y)$ satisfies the following $3 G$-inequality

$$
\frac{1}{G(x, y)} \leq C\left(\frac{1}{G(x, z)}+\frac{1}{G(z, y)}\right)
$$

for all $x, y, z \in M$ and some $C>1$. Then the function $\rho(x, y)=\frac{1}{G(x, y)}$ is a pseudo-distance on M. It follows that there exists a distance function $d(x, y)$ and $\gamma>0$ such that

$$
\rho(x, y) \simeq d(x, y)^{\gamma} .
$$

Hence, we obtain

$$
G(x, y) \simeq d(x, y)^{-\gamma}
$$

that is, M satisfies (G).
Assume that (M, ρ) satisfies (V) that is

$$
\begin{equation*}
\mu\{y: \rho(x, y)<r\} \simeq r^{\alpha} \tag{12}
\end{equation*}
$$

Then, for metric balls $B(o, r)$ with respect to d, we obtain

$$
\mu(B(x, r)) \simeq r^{\alpha \gamma}
$$

Hence, (M, d) satisfies (V) with $\tilde{\alpha}:=\alpha \gamma$. Assuming in addition that all balls are precompact, we obtain by Theorem 3 that the critical value of σ is equal to $\frac{\tilde{\alpha}}{\gamma}=\alpha$.

Idea of the proof of Theorem 3

Assume that u is a positive solution in $M \backslash K$ of

$$
\Delta u+u^{\sigma} \leq 0 .
$$

For any precompact open set $U \supset K$, we have

$$
\begin{equation*}
u \geq G_{\bar{U}^{c}}\left(u^{\sigma}\right) \text { in } U^{c} \tag{13}
\end{equation*}
$$

If $u>0$ then the superharmonicity of u implies the estimate

$$
\begin{equation*}
u \geq c G\left(\cdot, x_{0}\right) \quad \text { in } U^{c} \tag{14}
\end{equation*}
$$

for some $c>0$. On the other hand, one can prove that, for any precompact open set $\Omega \subset M$,

$$
\sup _{\Omega}\left(\Delta u+\lambda_{1}(\Omega) u\right) \geq 0
$$

where $\lambda_{1}(\Omega)$ is the first Dirichlet eigenvalue of Δ in Ω. It follows that

$$
\lambda_{1}(\Omega) \geq \inf _{\Omega} u^{\sigma-1}
$$

Combining this with (13) and (14), we obtain

$$
\lambda_{1}(\Omega)^{\frac{1}{\sigma-1}} \geq c \inf _{x \in \Omega} \int_{U^{c}} G_{\bar{U}^{c}}(x, y) G^{\sigma}\left(y, x_{0}\right) d \mu(y)
$$

If $\sigma \leq \frac{\alpha}{\gamma}$ then we bring this inequality to contradiction by choosing Ω large enough and by applying the hypotheses $(V),(G)$ to estimate all the quantities involved.

For the proof of the second part of Theorem 3, we construct a positive solution of the equation

$$
\Delta u+u^{\sigma}+\lambda^{\sigma} f^{\sigma}=0 \text { in } M
$$

where f is a specifically chosen decreasing function and $\lambda>0$ is small enough. This differential equation amounts to the integral equation

$$
u(x)=\int_{M} G(x, y)\left(u^{\sigma}(y)+\lambda^{\sigma} f(y)^{\sigma}\right) d \mu(y)
$$

and the latter is solved in a certain closed subset of $L^{\infty}(M)$ by observing that the operator in the right hand side is a contraction for small enough λ. Next, we improve the regularity properties of u in two steps: first show that u is Hölder and then that $u \in C^{2}$.

