On semi-linear elliptic inequalities on Riemannian manifolds

Alexander Grigor'yan

Potsdam University, August 2017

Based on joint works with W.Hansen, I.Verbitsky, Y.Sun

Setup and problem statement

Let M be a connected Riemannian manifold, Δ – the Laplace-Beltrami operator on M.

Consider the equation

$$-\Delta u + \Phi(x) u^{\sigma} \stackrel{}{=} f,$$

where $\Phi, f \in C(M), f \geq 0, \sigma > 0$. Solution *u* should be *non-negative* and in $C^{2}(M)$.

Our goal: pointwise estimates of u.

We always assume that Δ has a positive Green function G(x, y) on M, and use notation:

$$G\varphi\left(x\right) = \int_{M} G\left(x, y\right) \varphi\left(y\right) d\mu\left(y\right).$$

The estimates will be given in terms of the function

$$h = Gf.$$

Let $f \not\equiv 0$ so that h > 0. Assume in addition that $h < \infty$.

Linear case $\sigma = 1$

W. Hansen–Z.Ma 1990, AG–W.Hansen 2008: if $\Phi \geq 0$ and

$$-\Delta u + \Phi(x) u \ge f \quad \text{on } M,$$

then

$$u \ge h \exp\left(-\frac{1}{h}G\left(h\Phi\right)\right),$$

where h = Gf.

This implies the lower bound for the Green function G_{Φ} of $-\Delta + \Phi$:

$$G_{\Phi}(x,y) \ge G(x,y) \exp\left(-\frac{\int_{M} G(x,z) G(z,y) \Phi(z) d\mu(z)}{G(x,y)}\right)$$

In the case $\Phi \leq 0$ a similar estimate under additional assumptions was obtained by N.Kalton–I.Verbitsky 1999.

Main result

Theorem 1 (AG–I.Verbitsky, 2015) Let $u \ge 0$ solve $-\Delta u + \Phi u^{\sigma} \ge f$ in M. Set h = Gf. Let $0 < h < \infty$ and let $G(h^{\sigma}\Phi)$ be well defined.

(i) If
$$\sigma = 1$$
 then
 $u \ge h \exp\left(-\frac{1}{h}G\left(h\Phi\right)\right).$ (1)

(ii) If $\sigma > 1$ then

$$u \ge \frac{h}{\left[1 + (\sigma - 1)\frac{1}{h}G\left(h^{\sigma}\Phi\right)\right]^{\frac{1}{\sigma - 1}}},\tag{2}$$

where the expression in square brackets is necessarily positive:

$$-(\sigma - 1)G(h^{\sigma}\Phi) < h.$$
(3)

(iii) If $0 < \sigma < 1$ then

$$u \ge h \left[1 - (1 - \sigma) \frac{1}{h} G \left(1_{\{u > 0\}} h^{\sigma} \Phi \right) \right]_{+}^{\frac{1}{1 - \sigma}}.$$
 (4)

Estimates with boundary condition

Fix Ω – a relatively compact domain in M with smooth boundary. It suffices to prove (1)-(4) in Ω with G_{Ω} instead of G and with $h = G_{\Omega}f$.

New problem: let $h \in C^2(\Omega) \cap C(\overline{\Omega})$ be positive and superharmonic in Ω . Set $f = -\Delta h$ and assume that $u \in C^2(\Omega) \cap C(\overline{\Omega})$, $u \ge 0$, satisfies

 $-\Delta u + \Phi u^{\sigma} \ge f \quad \text{in } \Omega \quad \text{and} \quad u \ge h \quad \text{on } \partial \Omega.$ (5)

Theorem 2 Under the above condition, we have: (i) If $\sigma = 1$ then $u \ge h \exp\left(-\frac{1}{h}G_{\Omega}(h\Phi)\right)$. (ii) If $\sigma > 1$ then

$$u \ge \frac{h}{\left[1 + (\sigma - 1)\frac{1}{h}G_{\Omega}\left(h^{\sigma}\Phi\right)\right]^{\frac{1}{\sigma - 1}}},$$

where necessarily $-(\sigma - 1)G_{\Omega}(h^{\sigma}\Phi) < h.$ (iii) If $0 < \sigma < 1$ then

$$u \ge h \left[1 - (1 - \sigma) \frac{1}{h} G_{\Omega} \left(1_{\{u > 0\}} h^{\sigma} \Phi \right) \right]_{+}^{\frac{1}{1 - \sigma}}$$

Approach to the proof of Theorem 2

Assume for simplicity that u > 0 and h > 0 in $\overline{\Omega}$. Assume first $h \equiv 1$. Then $f = -\Delta h = 0$ and

 $-\Delta u + \Phi u^{\sigma} \ge 0 \text{ in } \Omega, \quad u \ge 1 \text{ on } \partial \Omega.$

Fix a C^2 function ϕ on (a interval of) \mathbb{R} with $\phi' > 0$ and set

$$v = \phi^{-1}\left(u\right).$$

By the chain rule we have

$$\Delta u = \Delta \phi \left(v \right) = \phi'(v) \Delta v + \phi''(v) |\nabla v|^2,$$

whence

$$-\Delta v = \frac{\phi'' \left|\nabla v\right|^2}{\phi'} - \frac{\Delta u}{\phi'} \ge \frac{\phi''}{\phi'} \left|\nabla v\right|^2 - \Phi \frac{\phi(v)^{\sigma}}{\phi'(v)}.$$
(6)

Choose ϕ to solve the initial value problem

$$\phi'(s) = \phi^{\sigma}(s), \quad \phi(0) = 1.$$

Hence,
$$\phi(s) = e^s$$
 if $\sigma = 1$, and $\phi(s) = [(1 - \sigma)s + 1]^{\frac{1}{1 - \sigma}}$ if $\sigma \neq 1$.

The inverse function ϕ^{-1} is always defined on $(0, +\infty)$.

The function ϕ is convex, and we obtain from (6)

$$-\Delta v \ge -\Phi \quad \text{in } \Omega. \tag{7}$$

Since on $\partial \Omega$ we have $v = \phi^{-1}(u) \ge \phi^{-1}(1) = 0$, it follows that

$$v \geq -G_{\Omega} \Phi$$
 in Ω

and, hence,

$$u \ge \phi \left(-G_{\Omega} \Phi\right)$$
 in Ω .

This yields the cases (i) - (iii) of Theorem 2 in the case h = 1. Indeed, in the case $\sigma = 1$ we have $\phi(s) = e^s$ and, hence,

$$u \ge \exp\left(-G_{\Omega}\Phi\right).$$

In the case $\sigma > 1$ we have $\phi(s) = [(1 - \sigma)s + 1]^{-\frac{1}{\sigma-1}}$, which gives the estimate of (ii)

$$u \ge \frac{1}{[1 + (\sigma - 1)G_{\Omega}\Phi]^{\frac{1}{\sigma - 1}}}.$$

Similarly one treats the case $0 < \sigma < 1$.

For a general h > 0, we use the *h*-transform of Δ in Ω :

$$\Delta^{h} := \frac{1}{h} \circ \Delta \circ h = \frac{1}{h^{2}} \operatorname{div} \left(h^{2} \nabla \right) + \frac{\Delta h}{h} = L + \frac{\Delta h}{h},$$

where

$$L = \frac{1}{h^2} \operatorname{div} \left(h^2 \nabla \right)$$

is the weighted Laplacian associated with measure $d\tilde{\mu} = h^2 d\mu$. For function $\tilde{u} = \frac{u}{h}$ we have

$$-\Delta^{h}\tilde{u} = -\frac{1}{h}\Delta u \ge \frac{1}{h}\left(-\Phi u^{\sigma} + f\right) = -h^{\sigma-1}\Phi\tilde{u}^{\sigma} - \frac{\Delta h}{h}$$

Setting $\tilde{\Phi} = h^{\sigma-1}\Phi$, we obtain that \tilde{u} satisfies

$$-\Delta^{h}\tilde{u} + \tilde{\Phi}\tilde{u}^{\sigma} \ge -\frac{\Delta h}{h} \text{ in } \Omega, \quad \tilde{u} \ge 1 \text{ on } \partial\Omega.$$

Now we use the same approach as in the case h = 1, but for the operator Δ^h in place of Δ .

Set $v = \phi^{-1}(\tilde{u}) = \phi^{-1}(u/h)$ and compute $\Delta^h v$ as in (6). For the part $L = \frac{1}{h^2} \operatorname{div}(h^2 \nabla)$ of the operator Δ^h , computation is the same as for Δ . The part $\frac{\Delta h}{h}$ gives in the end an additional term so that instead of (7) we obtain

$$-\Delta^{h}v \ge -\tilde{\Phi} + \left(\frac{\phi(v) - 1}{\phi'(v)} - v\right)\frac{\Delta h}{h}.$$

Multiplying by h, we obtain

$$-\Delta(hv) \ge -h^{\sigma}\Phi + \left(\frac{\phi(v) - 1}{\phi'(v)} - v\right)\Delta h.$$
(8)

The convexity of ϕ implies

$$\frac{\phi(s) - 1}{\phi'(s)} - s \le 0,\tag{9}$$

for any s in the domain of ϕ . Indeed, if s > 0 then $\exists \xi \in [0, s]$ such that

$$\frac{\phi(s)-1}{s} = \frac{\phi(s)-\phi(0)}{s} = \phi'(\xi) \le \phi'(s),$$

whence (9) follows. If s < 0 then $\xi \in [s, 0]$ such that

$$\frac{\phi(s) - 1}{s} = \frac{\phi(s) - \phi(0)}{s} = \phi'(\xi) \ge \phi'(s),$$

which again implies (9) since s < 0.

Since $\Delta h \leq 0$, we obtain

$$\left(\frac{\phi(v)-1}{\phi'(v)}-v\right)\Delta h \ge 0$$

and therefore by (8)

$$-\Delta (hv) \ge -h^{\sigma} \Phi \text{ in } \Omega.$$

On $\partial \Omega$ we have $v = \phi^{-1} (u/h) \ge \phi^{-1} (1) = 0$, which implies
 $hv \ge -G_{\Omega} (h^{\sigma} \Phi) \text{ in } \Omega.$

Dividing by h and applying ϕ , we obtain

$$u \ge \phi \left(-\frac{1}{h} G_{\Omega} \left(h^{\sigma} \Phi \right) \right)$$
 in Ω .

Existence of positive solutions

Let us ask for which values $\sigma > 1$ the inequality

$$\Delta u + u^{\sigma} \le 0 \tag{10}$$

has a positive solution u on M (the case of $\Phi \equiv -1$). For example, in \mathbb{R}^n with $n \leq 2$ any non-negative solution of (10) is 0 while for the case n > 2 (10) has a positive solution if and only if

$$\sigma > \frac{n}{n-2}$$

(Mitidieri and Pohozaev, 1998).

Let d(x, y) be a distance function on M, not necessarily geodesic, but such that the metric balls

$$B(x,r) = \{ y \in M, \quad d(x,y) < r \}.$$

are precompact open subsets of M. Set

$$V(x,r) = \mu \left(B(x,r) \right).$$

Theorem 3 (AG – Yuhua Sun, 2017) Assume that, for some $x_0 \in M$,

$$V(x_0, r) \simeq r^{\alpha} \quad for \ large \ r$$
 (V)

and

$$G(x,y) \simeq d(x,y)^{-\gamma} \text{ for large } d(x,y),$$
 (G)

where $\alpha > \gamma > 0$. Then, for any σ satisfying

$$1 < \sigma \le \frac{\alpha}{\gamma},$$

the inequality

$$\Delta u + u^{\sigma} \le 0 \tag{11}$$

has no positive solution in any exterior domain of M.

If in addition d is the geodesic distance, M has bounded geometry, and (V) holds for all $x_0 \in M$, then, for any

$$\sigma > \frac{\alpha}{\gamma},$$

the inequality (11) has a positive solution on M.

Hence, the critical value of the exponent σ is equal to $\frac{\alpha}{\gamma}$.

Example 1

Let Γ be an infinite connected graph with a uniformly bounded degree. Let d(x, y) be the graph distance on Γ and V(x, r) – the volume function. Let the discrete Laplace operator on Γ have a positive Green function G(x, y).

If Γ satisfies conditions (V) and (G) for some α and γ then we construct a manifold with the same properties by inflating Γ , that is, by replacing the edges of Γ by 2-dim cylinders. Since M has bounded geometry, the both parts of Theorem 3 apply in this case.

M.Barlow constructed in 2004 a fractal graph satisfying (V) and (G), for any pair (α, γ) such that

$$0<\gamma\leq\alpha-2.$$

Since γ can be arbitrarily small, the critical value $\frac{\alpha}{\gamma}$ can be arbitrarily large, unlike the Euclidean critical value $\frac{n}{n-2}$.

Example 2

Assume that G(x, y) satisfies the following 3*G*-inequality

$$\frac{1}{G(x,y)} \le C\left(\frac{1}{G(x,z)} + \frac{1}{G(z,y)}\right)$$

for all $x, y, z \in M$ and some C > 1. Then the function $\rho(x, y) = \frac{1}{G(x, y)}$ is a pseudo-distance on M. It follows that there exists a distance function d(x, y) and $\gamma > 0$ such that

$$\rho(x,y) \simeq d(x,y)^{\gamma}.$$

Hence, we obtain

$$G(x,y) \simeq d(x,y)^{-\gamma},$$

that is, M satisfies (G).

Assume that (M, ρ) satisfies (V) that is

$$\mu \{ y : \rho(x, y) < r \} \simeq r^{\alpha}.$$
(12)

Then, for metric balls B(o, r) with respect to d, we obtain

$$\mu(B(x,r)) \simeq r^{\alpha \gamma}$$

Hence, (M, d) satisfies (V) with $\tilde{\alpha} := \alpha \gamma$. Assuming in addition that all balls are precompact, we obtain by Theorem 3 that the critical value of σ is equal to $\frac{\tilde{\alpha}}{\gamma} = \alpha$.

Idea of the proof of Theorem 3

Assume that u is a positive solution in $M \setminus K$ of

 $\Delta u + u^{\sigma} \le 0.$

For any precompact open set $U \supset K$, we have

$$u \ge G_{\overline{U}^c} \left(u^{\sigma} \right) \quad \text{in } U^c. \tag{13}$$

If u > 0 then the superharmonicity of u implies the estimate

$$u \ge cG\left(\cdot, x_0\right) \quad \text{in } U^c,\tag{14}$$

for some c > 0. On the other hand, one can prove that, for any precompact open set $\Omega \subset M$,

$$\sup_{\Omega} (\Delta u + \lambda_1(\Omega)u) \ge 0,$$

where $\lambda_1(\Omega)$ is the first Dirichlet eigenvalue of Δ in Ω . It follows that

$$\lambda_1(\Omega) \ge \inf_{\Omega} u^{\sigma-1}.$$

Combining this with (13) and (14), we obtain

$$\lambda_{1}\left(\Omega\right)^{\frac{1}{\sigma-1}} \geq c \inf_{x \in \Omega} \int_{U^{c}} G_{\overline{U}^{c}}\left(x, y\right) G^{\sigma}\left(y, x_{0}\right) d\mu\left(y\right).$$

If $\sigma \leq \frac{\alpha}{\gamma}$ then we bring this inequality to contradiction by choosing Ω large enough and by applying the hypotheses (V), (G) to estimate all the quantities involved.

For the proof of the second part of Theorem 3, we construct a positive solution of the equation

$$\Delta u + u^{\sigma} + \lambda^{\sigma} f^{\sigma} = 0 \quad \text{in } M,$$

where f is a specifically chosen decreasing function and $\lambda > 0$ is small enough. This differential equation amounts to the integral equation

$$u(x) = \int_M G(x, y) \left(u^{\sigma}(y) + \lambda^{\sigma} f(y)^{\sigma} \right) d\mu(y),$$

and the latter is solved in a certain closed subset of $L^{\infty}(M)$ by observing that the operator in the right hand side is a contraction for small enough λ . Next, we improve the regularity properties of u in two steps: first show that u is Hölder and then that $u \in C^2$.