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Setup and problem statement

Let M be a connected Riemannian manifold, Δ – the Laplace-Beltrami
operator on M .

Consider the equation

−Δu + Φ (x) uσ =
(≥)

f,

where Φ, f ∈ C (M), f ≥ 0, σ > 0. Solution u should be non-negative
and in C2 (M).

Our goal : pointwise estimates of u.

We always assume that Δ has a positive Green function G (x, y) on
M, and use notation:

Gϕ (x) =

∫

M

G (x, y) ϕ (y) dμ (y) .

The estimates will be given in terms of the function

h = Gf.

Let f 6≡ 0 so that h > 0. Assume in addition that h < ∞.
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Linear case σ = 1

W. Hansen–Z.Ma 1990, AG–W.Hansen 2008: if Φ ≥ 0 and

−Δu + Φ (x) u ≥ f on M,

then

u ≥ h exp

(

−
1

h
G (hΦ)

)

,

where h = Gf .
This implies the lower bound for the Green function GΦ of −Δ + Φ:

GΦ (x, y) ≥ G (x, y) exp

(

−

∫
M

G (x, z) G (z, y) Φ (z) dμ (z)

G (x, y)

)

.

In the case Φ ≤ 0 a similar estimate under additional assumptions was
obtained by N.Kalton–I.Verbitsky 1999.
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Main result

Theorem 1 (AG–I.Verbitsky, 2015) Let u ≥ 0 solve −Δu+Φuσ ≥ f in
M . Set h = Gf . Let 0 < h < ∞ and let G (hσΦ) be well defined.

(i) If σ = 1 then

u ≥ h exp

(

−
1

h
G (hΦ)

)

. (1)

(ii) If σ > 1 then

u ≥
h

[

1 + (σ − 1)
1

h
G (hσΦ)

] 1
σ−1

, (2)

where the expression in square brackets is necessarily positive:

− (σ − 1)G(hσΦ) < h. (3)

(iii) If 0 < σ < 1 then

u ≥ h

[

1 − (1 − σ)
1

h
G
(
1{u>0}h

σΦ
)
] 1

1−σ

+

. (4)
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Estimates with boundary condition

Fix Ω – a relatively compact domain in M with smooth boundary. It
suffices to prove (1)-(4) in Ω with GΩ instead of G and with h = GΩf .

New problem: let h ∈ C2 (Ω)∩C
(
Ω
)

be positive and superharmonic

in Ω. Set f = −Δh and assume that u ∈ C2(Ω)∩C
(
Ω
)
, u ≥ 0, satisfies

− Δu + Φuσ ≥ f in Ω and u ≥ h on ∂Ω. (5)

Theorem 2 Under the above condition, we have:
(i) If σ = 1 then u ≥ h exp

(
− 1

h
GΩ (hΦ)

)
.

(ii) If σ > 1 then

u ≥
h

[

1 + (σ − 1)
1

h
GΩ (hσΦ)

] 1
σ−1

,

where necessarily −(σ − 1)GΩ(hσΦ) < h.
(iii) If 0 < σ < 1 then

u ≥ h

[

1 − (1 − σ)
1

h
GΩ

(
1{u>0}h

σΦ
)
] 1

1−σ

+

.
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Approach to the proof of Theorem 2

Assume for simplicity that u > 0 and h > 0 in Ω. Assume first h ≡ 1.
Then f = −Δh = 0 and

−Δu + Φuσ ≥ 0 in Ω, u ≥ 1 on ∂Ω.

Fix a C2 function φ on (a interval of) R with φ′ > 0 and set

v = φ−1 (u) .

By the chain rule we have

Δu = Δφ (v) = φ′(v)Δv + φ′′(v)|∇v|2,

whence

− Δv =
φ′′ |∇v|2

φ′ −
Δu

φ′ ≥
φ′′

φ′ |∇v|2 − Φ
φ(v)σ

φ′(v)
. (6)

Choose φ to solve the initial value problem

φ′ (s) = φσ (s) , φ (0) = 1.
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Hence, φ (s) = es if σ = 1, and φ (s) = [(1 − σ)s + 1]
1

1−σ if σ 6= 1.

The inverse function φ−1 is always defined on (0, +∞) .
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The function φ is convex, and we obtain from (6)

− Δv ≥ −Φ in Ω. (7)

Since on ∂Ω we have v = φ−1 (u) ≥ φ−1 (1) = 0, it follows that

v ≥ −GΩΦ in Ω

and, hence,
u ≥ φ (−GΩΦ) in Ω.

This yields the cases (i) − (iii) of Theorem 2 in the case h = 1.
Indeed, in the case σ = 1 we have φ (s) = es and, hence,

u ≥ exp (−GΩΦ) .

In the case σ > 1 we have φ (s) = [(1 − σ)s + 1]−
1

σ−1 , which gives the
estimate of (ii)

u ≥
1

[1 + (σ − 1)GΩΦ]
1

σ−1

.

Similarly one treats the case 0 < σ < 1.
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For a general h > 0, we use the h-transform of Δ in Ω:

Δh :=
1

h
◦ Δ ◦ h =

1

h2
div
(
h2∇

)
+

Δh

h
= L +

Δh

h
,

where

L =
1

h2
div
(
h2∇

)

is the weighted Laplacian associated with measure dμ̃ = h2dμ.
For function ũ = u

h
we have

−Δhũ = −
1

h
Δu ≥

1

h
(−Φuσ + f) = −hσ−1Φũσ −

Δh

h
.

Setting Φ̃ = hσ−1Φ, we obtain that ũ satisfies

−Δhũ + Φ̃ũσ ≥ −
Δh

h
in Ω, ũ ≥ 1 on ∂Ω.

Now we use the same approach as in the case h = 1, but for the operator
Δh in place of Δ.
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Set v = φ−1 (ũ) = φ−1 (u/h) and compute Δhv as in (6). For the part
L = 1

h2 div (h2∇) of the operator Δh, computation is the same as for Δ.
The part Δh

h
gives in the end an additional term so that instead of (7)

we obtain

−Δhv ≥ −Φ̃ +

(
φ(v) − 1

φ′(v)
− v

)
Δh

h
.

Multiplying by h, we obtain

− Δ (hv) ≥ −hσΦ +

(
φ(v) − 1

φ′(v)
− v

)

Δh. (8)

The convexity of φ implies

φ(s) − 1

φ′(s)
− s ≤ 0, (9)

for any s in the domain of φ. Indeed, if s > 0 then ∃ξ ∈ [0, s] such that

φ (s) − 1

s
=

φ (s) − φ (0)

s
= φ′ (ξ) ≤ φ′ (s) ,
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whence (9) follows. If s < 0 then ξ ∈ [s, 0] such that

φ (s) − 1

s
=

φ (s) − φ (0)

s
= φ′ (ξ) ≥ φ′ (s) ,

which again implies (9) since s < 0.
Since Δh ≤ 0, we obtain

(
φ(v) − 1

φ′(v)
− v

)

Δh ≥ 0

and therefore by (8)

−Δ (hv) ≥ −hσΦ in Ω.

On ∂Ω we have v = φ−1 (u/h) ≥ φ−1 (1) = 0, which implies

hv ≥ −GΩ (hσΦ) in Ω.

Dividing by h and applying φ, we obtain

u ≥ φ

(

−
1

h
GΩ (hσΦ)

)

in Ω.
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Existence of positive solutions

Let us ask for which values σ > 1 the inequality

Δu + uσ ≤ 0 (10)

has a positive solution u on M (the case of Φ ≡ −1). For example, in
Rn with n ≤ 2 any non-negative solution of (10) is 0 while for the case
n > 2 (10) has a positive solution if and only if

σ >
n

n − 2

(Mitidieri and Pohozaev, 1998).
Let d (x, y) be a distance function on M , not necessarily geodesic, but

such that the metric balls

B(x, r) = {y ∈ M, d(x, y) < r} .

are precompact open subsets of M . Set

V (x, r) = μ (B (x, r)) .
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Theorem 3 (AG – Yuhua Sun, 2017) Assume that, for some x0 ∈ M ,

V (x0, r) ' rα for large r (V )

and
G (x, y) ' d (x, y)−γ for large d (x, y) , (G)

where α > γ > 0. Then, for any σ satisfying

1 < σ ≤
α

γ
,

the inequality
Δu + uσ ≤ 0 (11)

has no positive solution in any exterior domain of M .
If in addition d is the geodesic distance, M has bounded geometry,

and (V ) holds for all x0 ∈ M , then, for any

σ >
α

γ
,

the inequality (11) has a positive solution on M .

Hence, the critical value of the exponent σ is equal to α
γ
.
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Example 1

Let Γ be an infinite connected graph with a uniformly bounded degree.
Let d (x, y) be the graph distance on Γ and V (x, r) – the volume function.
Let the discrete Laplace operator on Γ have a positive Green function
G (x, y).

If Γ satisfies conditions (V ) and (G) for some α and γ then we con-
struct a manifold with the same properties by inflating Γ, that is, by
replacing the edges of Γ by 2-dim cylinders. Since M has bounded ge-
ometry, the both parts of Theorem 3 apply in this case.

M.Barlow constructed in 2004 a fractal graph satisfying (V ) and (G),
for any pair (α, γ) such that

0 < γ ≤ α − 2.

Since γ can be arbitrarily small, the critical value α
γ

can be arbitrarily
large, unlike the Euclidean critical value n

n−2
.
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Example 2

Assume that G(x, y) satisfies the following 3G-inequality

1

G(x, y)
≤ C

(
1

G(x, z)
+

1

G(z, y)

)

for all x, y, z ∈ M and some C > 1. Then the function ρ (x, y) = 1
G(x,,y)

is
a pseudo-distance on M . It follows that there exists a distance function
d(x, y) and γ > 0 such that

ρ(x, y) ' d(x, y)γ .

Hence, we obtain
G(x, y) ' d(x, y)−γ ,

that is, M satisfies (G).
Assume that (M,ρ) satisfies (V ) that is

μ {y : ρ(x, y) < r} ' rα. (12)

Then, for metric balls B(o, r) with respect to d, we obtain

μ(B(x, r)) ' rαγ .
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Hence, (M,d) satisfies (V ) with α̃ := αγ. Assuming in addition that all
balls are precompact, we obtain by Theorem 3 that the critical value of
σ is equal to α̃

γ
= α.
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Idea of the proof of Theorem 3

Assume that u is a positive solution in M \ K of

Δu + uσ ≤ 0.

For any precompact open set U ⊃ K, we have

u ≥ GU
c (uσ) in U c. (13)

If u > 0 then the superharmonicity of u implies the estimate

u ≥ cG (∙, x0) in U c, (14)

for some c > 0. On the other hand, one can prove that, for any precom-
pact open set Ω ⊂ M ,

sup
Ω

(Δu + λ1(Ω)u) ≥ 0,

where λ1 (Ω) is the first Dirichlet eigenvalue of Δ in Ω. It follows that

λ1 (Ω) ≥ inf
Ω

uσ−1.
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Combining this with (13) and (14), we obtain

λ1 (Ω)
1

σ−1 ≥ c inf
x∈Ω

∫

Uc

GU
c (x, y) Gσ (y, x0) dμ (y) .

If σ ≤ α
γ

then we bring this inequality to contradiction by choosing Ω

large enough and by applying the hypotheses (V ), (G) to estimate all
the quantities involved.

For the proof of the second part of Theorem 3, we construct a positive
solution of the equation

Δu + uσ + λσfσ = 0 in M,

where f is a specifically chosen decreasing function and λ > 0 is small
enough. This differential equation amounts to the integral equation

u(x) =

∫

M

G(x, y) (uσ(y) + λσf(y)σ) dμ(y),

and the latter is solved in a certain closed subset of L∞ (M) by observing
that the operator in the right hand side is a contraction for small enough
λ. Next, we improve the regularity properties of u in two steps: first
show that u is Hölder and then that u ∈ C2.
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