Laplacian cut-offs

by PhD. Davide Bianchi co-author: Prof. Alberto G. Setti

Università degli Studi dell'Insubria Dip. di Scienze e Alta Tecnologia

Let us start with a concrete problem: PME/FDE - Cauchy Problem

$$(CP) \qquad \begin{cases} \partial_t u(t,x) = \Delta_x u^m(t,x) & \text{for } x \in (0,\infty) \times M\\ \lim_{t \to 0} u(t,x) = u_0(x) & \text{for } x \in M, \end{cases}$$
(1)

where the given initial datum u_0 belongs to $L^1(M)$. If $u_0 \ge 0$, we can think of it as an initial mass. Remark: $\Delta u^m = \operatorname{div}(mu^{m-1}\nabla u)$;

 $D(u) := mu^{m-1} = \text{diffusivity coefficient.}$

- m > 1: porous medium equation;
- m = 1: heat equation;

• 0 < m < 1: fast diffusion equation $(D(u) \rightarrow \infty \text{ as } u \sim 0)$.

FDE weak mass conservation on \mathbb{R}^d

Proposition (Herrero - 1985)

Let $u(t,x) \ge v(t,x)$ be weak solutions of the Cauchy-FDE problem where $M = \mathbb{R}^d$. Then, for all R > 0, $\gamma > 1$ and $t, s \ge 0$

$$\left[\int_{B_R} \left[u(t) - v(t)\right] dx\right]^{1-m} \leq \left[\int_{B_{\gamma R}} \left[u(s) - v(s)\right] dx\right]^{1-m} + M_{R,\gamma} |t-s|,$$

where $M_{R,\gamma} = \frac{c_0}{(\gamma - 1)R^2} \text{ Vol}(B_{\gamma R} \setminus B_R)^{1-m} > 0$, and the constant $c_0 > 0$ depends only on m and d.

FDE weak mass conservation on a manifold

Proposition (Bonforte, Grillo, Vazquez - 2008)

Let M be a non-compact, complete and simply connected manifold with $-\kappa^2 \leq \text{Sec} \leq 0$. Let $u(t,x) \geq v(t,x)$ be weak solutions of the Cauchy-FDE problem. Then, for all R > 0, $\gamma > 1$ and $t, s \geq 0$

$$\left[\int_{B_R} \left[u(t) - v(t)\right] dx\right]^{1-m} \leq \left[\int_{B_{\gamma R}} \left[u(s) - v(s)\right] dx\right]^{1-m} + M_{R,\gamma} |t-s|,$$

where
$$M_{R,\gamma} = \frac{c_0}{(\gamma - 1)R} \left(c_1 + \frac{c_0}{(\gamma - 1)R} \right)$$
 $Vol(B_{\gamma R} \setminus B_R)^{1-m} > 0$,
and the constants $c_0 > 0$, $c_1 \ge 0$, depend only on m and d .

Question: can we be satisfied with the hypothesis on ${\cal M}$ or are these hypothesis too restrictive?

Let us consider one of the basic example of a noncompact smooth (manifold) surface: the cylinder $C_2 = S^1 \times \mathbb{R}$.

Is it a good extension? No.

Let us consider one of the basic example of a noncompact smooth (manifold) surface: the cylinder $C_2 = S^1 \times \mathbb{R}$.

It is not simply connected.

Technical problem: existence of cut-off functions, ϕ_R , with controlled gradient and Laplacian decay

Let $\psi \in C^{\infty}(\mathbb{R})$, $0 \leq \psi \leq 1$, $\psi \equiv 1$ on $(-\infty, 1]$, $\psi \equiv 0$ on $[\gamma, \infty)$,

Above: a 1d graphic example to construct a cut off ϕ_R .

Laplacian cut-off (Euclidean case): properties of ϕ_R

(i)
$$\phi_R : \mathbb{R}^d \to \mathbb{R}$$
 smooth;
(ii) $0 \le \phi_R \le 1$;
(iii) $\phi_R \equiv 1$ on $B_R(o)$;
(iv) $\operatorname{supp} \phi_R \subset B_{\gamma R}(o)$;

Gradient and Laplacian decay of
$$\phi_R$$
 in an Euclidean space
(v) $|\nabla \phi_R(x)| \leq \frac{C}{R}$, (vi) $|\Delta \phi_R(x)| \leq \frac{C}{R^2}$.

Laplacian cut-off (Eculidean case): properties of ϕ_R

(i)
$$\phi_R : \mathbb{R}^d \to \mathbb{R}$$
 smooth;
(ii) $0 \le \phi_R \le 1$;
(iii) $\phi_R \equiv 1$ on $B_R(o)$;
(iv) $\operatorname{supp} \phi_R \subset B_{\gamma R}(o)$;

Laplacian cut-off (Eculidean case): properties of ϕ_R

(i) $\phi_R : \mathbb{R}^d \to \mathbb{R}$ smooth; (ii) $0 \le \phi_R \le 1$; (iii) $\phi_R \equiv 1$ on $B_R(o)$; (iv) $\operatorname{supp} \phi_R \subset B_{\gamma R}(o)$;

What does happen on a Riemannian manifold?

In local coordinates x^i , we have

$$\nabla u = g^{ij} \frac{\partial u}{\partial x_i} \frac{\partial}{\partial x^j} \quad \Delta u = \frac{\partial}{\partial x^i} \left(g^{ij} \sqrt{g} \frac{\partial u}{\partial x^j} \right)$$

where $\{g_{ij}\}\$ is the matrix of the coefficients of the metric in the coordinates $\{x^i\}$, $\{g^{ij}\}\$ its inverse and $g = \det\{g_{ij}\}$.

Let
$$r(x) := \operatorname{dist}(x, o)$$
.

 $r_{\text{euclid}}(x)$ is such that:

What does happen on a Riemannian manifold?

In local coordinates x^i , we have

$$\nabla u = g^{ij} \frac{\partial u}{\partial x_i} \frac{\partial}{\partial x^j} \quad \Delta u = \frac{\partial}{\partial x^i} \left(g^{ij} \sqrt{g} \frac{\partial u}{\partial x^j} \right)$$

where $\{g_{ij}\}\$ is the matrix of the coefficients of the metric in the coordinates $\{x^i\}$, $\{g^{ij}\}\$ its inverse and $g = \det\{g_{ij}\}$.

Let
$$r(x) := \operatorname{dist}(x, o)$$
.

 $r_{\text{euclid}}(x)$ is such that:

- r_{euclid} is smooth;
- $|\nabla r_{\text{euclid}}(x)| \equiv 1;$

•
$$\Delta r_{\text{euclid}}(x) = \frac{d-1}{r_{\text{euclid}}(x)}.$$

What does happen on a Riemannian manifold?

In local coordinates x^i , we have

$$\nabla u = g^{ij} \frac{\partial u}{\partial x_i} \frac{\partial}{\partial x^j} \quad \Delta u = \frac{\partial}{\partial x^i} \left(g^{ij} \sqrt{g} \frac{\partial u}{\partial x^j} \right)$$

where $\{g_{ij}\}\$ is the matrix of the coefficients of the metric in the coordinates $\{x^i\}$, $\{g^{ij}\}\$ its inverse and $g = \det\{g_{ij}\}$.

Let
$$r_{\boldsymbol{M}}(x) := \mathsf{dist}_{\boldsymbol{M}}(x, o).$$

 $r_M(x)$ is such that, (in general):

- r_M is smooth Lipschitz;
- $|\nabla r_{\boldsymbol{M}}(x)| \equiv 1;$
- $\Delta r_M(x) = ??$

Remark: If M is simply connected and $-\kappa^2 \leq \text{Sec} \leq 0$ then

$$0 < \Delta r_{\boldsymbol{M}}(x) < C_1 + \frac{C_2}{r_{\boldsymbol{M}}(x)}$$

Cut-offs under minimal geometric assumptions: a way to improve it

Idea:

- No topological assumptions;
- We relax the geometric hypothesis:

 $-\kappa^2 \leq \operatorname{Sec}_M \leq 0 \longrightarrow \operatorname{Ric}_M \geq -G(r), \ G \in C^0([0,\infty));$

Technical tools needed

Crucial fact

Theorem (Li-Yau gradient estimate)

Let M be a complete Riemannian manifold with $\operatorname{Ric}_M \ge -(d-1)\kappa^2$. Suppose that $\omega \in C^2(M)$ is a solution of

$$\begin{cases} \omega > 0, \\ \Delta \omega = 0 \quad \text{on } M, \end{cases}$$

and $B_R(x)$ is a geodesic ball in M. Then

$$\frac{|\nabla \omega|^2}{\omega^2} \leq C_d \left(\frac{1+R|\kappa|}{R}\right)^2 \quad \text{on } B_{\frac{R}{2}}(x).$$

Technical tools needed

Theorem (Gradient estimate, new version. B., Setti - 2016)

Let $\operatorname{Ric}_{M}(\cdot, \cdot) \geq -(d-1)G(r)\langle \cdot, \cdot \rangle$ on M in the sense of quadratic forms, where, r = r(x) is the distance function from a fixed point $o \in M$.

Let $R_1 > R_0 > 0$, $\gamma > 1$ and let $\omega : M \setminus \overline{B}_{R_0}(o) \to \mathbb{R}$ be a $C^2(M)$ function satisfying

$$\begin{cases} \omega > 0 & \text{on } M \setminus \overline{B}_{R_0}(o), \\ \Delta \omega = f_1(\zeta) f_2(\omega), \end{cases}$$
(2)

where $f_1, f_2: [0, +\infty) \to \mathbb{R}$ are C^1 functions and $\zeta: M \to [0, +\infty)$ is such that $|\nabla \zeta(x)| \leq L$ for every $x \in M$. Moreover, fix t > 0 such that $(1-t)R_1 > R_0$. Then...

$$\frac{|\nabla\omega|^2}{\omega^2} \le \max\left\{\Omega_1; \frac{4d\Omega_2 + \sqrt{(4d\Omega_2)^2 + 4\Omega_3}}{2}\right\},\tag{3}$$

on
$$B_{\gamma R_1}(o) \setminus \overline{B}_{R_1}(o)$$
, where
 $\Omega_1 := \max\{\omega^{-1}f_1(r)f_2(\omega) : x \in \overline{B}_{(\gamma+t)R_1}(o) \setminus B_{(1-t)R_1}(o)\};$
 $\Omega_2 := \frac{A_1}{R_1} \left(\frac{1}{R_1} + 4(d-1)\max\left\{\sqrt{\overline{G}};\frac{1}{R_1}\right\}\right) + \frac{(2+4d)A_1}{R_1^2} + 2(d-1)\overline{G} + \max\{2f_1(r)\max\{(\omega^{-1}f_2(\omega) - f_2'(\omega)); 0\} + 2\omega^{-1}L|f_1'(r)|^{2\lambda}|f_2(\omega)| : x \in \mathbf{D}_{\gamma,t,R_1}(o)\};$
 $\Omega_3 := \max\left\{\omega^{-1}L|f_1'(r)|^{2(1-\lambda)}|f_2(\omega)| : x \in \mathbf{D}_{\gamma,t,R_1}(o)\right\},$

and

$$\mathbf{D}_{\gamma,t,R_1}(o) := \overline{B}_{(\gamma+t)R_1}(o) \setminus B_{(1-t)R_1}(o), \quad A_1 = A_1(t), \\ \overline{G} := \max\{G(r) : r \in [(1-t)R_1, (\gamma+t)R_1]\}.$$

The parameter $\lambda > 0$ can be chosen in such a way to minimize the right hand side of (3).

The new gradient estimate is more complicated than the original one. But, if we set

- $G(r) = \frac{\kappa^2}{(1+r^2)^{\alpha/2}}$,
- $\zeta = r$,
- $f_1(\zeta) = \frac{C}{r^{\alpha}}$, $f_2(\omega) = \omega$,

then we get...

... a new exhaustion function $f(x) \approx -\log \omega(x)$

Theorem (B. - Setti 2016)

Let M be a complete, noncompact smooth manifold M with $\operatorname{Ric}_{M} \geq -\frac{(d-1)\kappa^{2}}{(1+r^{2})^{\alpha/2}} \langle \cdot, \cdot \rangle, \alpha \in [-2, 2].$ Then there exists an exhaustion smooth function $f: M \to \mathbb{R}$ such that • $D_{1}r^{1-\alpha/2}(x) \leq f(x) \leq D_{2}r^{1-\alpha/2}(x);$ • $|\nabla f(x)| \leq \frac{C_{1}}{r^{\alpha/2}};$

• $|\Delta f(x)| \le \frac{C_2}{r^{\alpha}}.$

Laplacian cut-offs (Riemannian case)

Define the metric ball cut-off $\phi_R(x) = \psi\left(\frac{f(x)}{D_1 R^{1-\alpha/2}}\right)$. It holds

•
$$0 \le \phi_R \le 1$$
, $\phi_R \equiv 1$ on $B_R(o)$;

- $\operatorname{supp}\phi_R \subset B_{\gamma R}(o);$
- $|\nabla \phi_R| \leq \frac{C'}{R};$
- $|\Delta \phi_R| \leq \frac{C''}{R^{1+\alpha/2}}.$

In particular, this is true for $\kappa = 0$. $\{\phi_R\}$ are called Laplacian cut-offs.

FDE weak mass conservation on a manifold, improved

Proposition (B., Setti - 2016)

Let M be a non-compact complete manifold of dimension d with

$$\mathsf{Ric}_M(\cdot, \cdot) \ge -(d-1)rac{\kappa^2}{(1+r^2)^{lpha/2}}\langle \cdot, \cdot
angle$$

with $\kappa \ge 0$ and $\alpha \in [-2,2]$. Let $u(t,x) \ge v(t,x)$ be weak solutions of the Cauchy-FDE problem. Then, for any $\gamma > \Gamma$, and $t, s \ge 0$ it holds

$$\left[\int_{B_R} (u(t) - v(t)) \, dx\right]^{1-m} \leq \left[\int_{B_{\gamma R}} (u(s) - v(s)) \, dx\right]^{1-m} + (t-s) \frac{C}{R^{1+\frac{\alpha}{2}}} \operatorname{Vol}(B_{\gamma R} \setminus B_R)^{1-m}.$$

Application: extinction time

Let $T(u_0)$ be the extinction time of the solution u(t,x) with initial condition $u_0(x)$, namely $u(t,x) \equiv 0$ for every $t \geq T(u_0)$. If $\alpha = 2$, namely $\operatorname{Ric}_M(\cdot, \cdot) \geq -(d-1)\frac{\kappa^2}{1+r^2}\langle \cdot, \cdot \rangle$, we have

$$T(u_0) \ge \bar{C} \frac{R^2}{R^{\left[1 + \left(\frac{1+\sqrt{1+4\kappa^2}}{2}\right)(d-1)\right](1-m)}},$$

whence, letting $R \to \infty$, we deduce that $T(u_0) = \infty$ if

$$m > m_c = 1 - \frac{2}{\left[1 + \left(\frac{1 + \sqrt{1 + 4\kappa^2}}{2}\right)(d-1)\right]}.$$
 (4)

Note that, if Ric ≥ 0 , so that we can take $\kappa=0,$ we recover the Euclidean constant $m_c=1-\frac{2}{d}.$

Others applications on Riemannian manifolds

- Essential self-adjointness of Schrodinger-type operators;
- Gagliardo-Niremberg-type L^q -estimates for the gradient;
- Properties of PME/FDE solutions of the Cauchy problem: existence and uniqueness with $L^1(M)$ initial datum, L^1 contractivity, conservation of mass, Aronson-Bénilan estimates;
- PME with "big" data, i.e., $u_0 \in L^1_{loc}(M)$.
- 📄 D. Bianchi and A. Setti,

Laplacian cut-offs, porous and fast diffusion equation and other applications

ArXiv 1607.06008

B. Güneysu,

Sequences of Laplacian cut-off functions

J. Geom. Anal. 26.1 (2016): 171-184.