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Almost-Periodic Schrödinger Operators Some Surprising Results An Extension of the Kunz-Souillard Method

Almost-Periodic Schrödinger Operators

We consider Schrödinger operators H acting on `2(Z) via

[Hψ](n) = ψ(n + 1) + ψ(n − 1) + V (n)ψ(n)

Our main focus will be on almost-periodic potentials V , that is, V ’s for which
the set of translates of V has compact closure in `∞(Z).

Alternatively, this means that V can be written as

V (n) = f (T nω)

where Ω is a compact Abelian group, T : Ω→ Ω, ω 7→ ω + α is a minimal
translation, ω ∈ Ω, and f : Ω→ R is continuous.

Special cases:
(i) V periodic ⇔ Ω = Zp ⇔ ∃p s.t. V (·+ p) = V (·)
(ii) V quasi-periodic ⇔ Ω = Td

(iii) V limit-periodic ⇔ Ω Cantor ⇔ V = ‖ · ‖∞ − limk→∞ V
(per)
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Some Paradigms for Almost-Periodic Schrödinger Operators

Based on heuristics and classical results in this field, several paradigms have
emerged.

Paradigm 1. Small potentials favor absolutely continuous spectrum, and large
potentials favor pure point spectrum.

Let us explain the heuristic argument. Given V almost periodic, consider the
operator Hλ = ∆ + λV with an additional coupling constant λ. Clearly,
H0 = ∆, which has purely absolutely continuous spectrum, and hence one
would hope that some kind of perturbative argument would show that Hλ has
(purely) absolutely continuous spectrum for sufficiently small λ, as well.

Similarly, since the spectral types of Hλ and λ−1Hλ are the same, and the
latter operator (which is λ−1∆ + V ) becomes V for λ =∞, which has pure
point spectrum, one would hope that some kind of perturbative argument
would show that Hλ has (pure) point spectrum for sufficiently large λ, as well.
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Some Paradigms for Almost-Periodic Schrödinger Operators

Paradigm 2. Suitable periodic approximation should imply absolute continuity
of the limit, or at least continuity.

Periodic potentials give rise to purely absolutely continuous spectrum.
Moreover, the generalized eigenfunctions have Floquet-Bloch structure
(u(n) = e ikpu(per)(n)). Suitable approximation with periodic potentials should
push some of these properties through to the limit.

Some classical implementations of this idea:
1. A dense set of limit-periodic potentials gives rise to purely absolutely
continuous spectrum (Avron-Simon 81).
2. Quasi-periodic potentials with Liouville frequencies give rise to continuous
spectrum (Avron-Simon 82).
3. A dense set of limit-periodic potentials gives rise to Floquet-Bloch solutions
(Pastur-Tkachenko 88).
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Quasi-Periodic Potentials

Recall that we consider Schrödinger operators H acting on `2(Z) via

[Hψ](n) = ψ(n + 1) + ψ(n − 1) + V (n)ψ(n)

where
V (n) = f (T nω)

with a minimal translation T : Td → Td , ω 7→ ω + α and a continuous
f : Td → R.

Let us describe some results that challenge Paradigm 1.

Paradigm 1. Small potentials favor absolutely continuous spectrum, and large
potentials favor pure point spectrum.

Theorem (Avila-D. 05)

Fixing T as above, the set

{f ∈ C(Td ,R) : σac(∆ + λV ) = ∅ for all ω ∈ Td and almost all λ > 0}

is a dense Gδ.
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Quasi-Periodic Potentials

Theorem (Boshernitzan-D. 08)

Fixing T as above, the set

{f ∈ C(Td ,R) : σpp(∆ + λV ) = ∅ for all λ > 0 and almost all ω ∈ Td}

is a dense Gδ.

Combining the two results, we see that for a given minimal torus translation,
we have that for a generic set of sampling functions f , the operator ∆ + λV
has purely singular continuous spectrum for almost all ω ∈ Td and almost all
λ > 0. From the perspective of Paradigm 1, this is surprising for both small
and large values of λ.

The proof of the first result relies on Kotani theory, relating the absolutely
continuous spectrum and the set of energies where the Lyapunov exponent
vanishes, and a new upper-semicontinuity property of the Lyapunov exponent.

The proof of the second result relies on Gordon’s lemma.
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Quasi-Periodic Potentials

Let us now discuss some more recent results.

Theorem (D.-Gorodetski 16)

Given α ∈ T \Q, ε > 0 and ω ∈ T, there is f ∈ C(T,R) with ‖f ‖∞ < ε such
that the Schrödinger operator with potential V (n) = f (ω + nα) has pure point
spectrum.

Remarks:
1. This holds for any irrational frequency, even Liouville numbers.
2. The sampling function may have arbitrarily small norm, there had been no
prior example with ‖f ‖∞ ≤ 2.
3. We can actually prove the following stronger result: Given α ∈ T \Q and
ω ∈ T, the set of f ∈ C(T,R) for which the Schrödinger operator with
potential V (n) = f (ω + nα) has pure point spectrum is dense.
4. This extends easily to the multi-frequency case.
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Quasi-Periodic Potentials

To emphasize how little about the base dynamics we use in the proof of this
statement, let us generalize the latter statement even further.

Theorem (D.-Gorodetski 16)

Suppose Ω is a compact metric space and T : Ω→ Ω is invertible. Assume
ω ∈ Ω is such that its orbit {T nω : n ∈ Z} is infinite. Then, the set of
f ∈ C(Ω,R) for which the Schrödinger operator with potential
Vω(n) = f (T nω) has pure point spectrum is dense.
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Quasi-Periodic Potentials

As pointed out above, this type of result is of course most surprising for
Liouville frequencies α. However, in that case there is no hope to improve the
regularity statement on f .

Fixing any modulus of continuity, one can show using a Gordon-type argument
that for a suitable class of Liouville numbers (that will form a dense Gδ subset
of T), there are no eigenvalues for any f with the given modulus of continuity
and any phase ω. Thus one has to look for improved regularity of f only when
the frequency α is not Liouville.

Here is a result in this direction.

Theorem (D.-Gorodetski 16)

Suppose α ∈ T \Q is Diophantine. Then, given any ω ∈ T and γ ∈ (0, 1/2),
the set of Hölder continuous functions f ∈ Cγ(T,R) for which the Schrödinger
operator with potential V (n) = f (ω + nα) has pure point spectrum is dense in
Cγ(T,R).
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Limit-Periodic Potentials

Let us describe some results that challenge Paradigm 2.

Paradigm 2. Suitable periodic approximation should imply absolute continuity
of the limit, or at least continuity.

Of course the results above, in the particular case of Liouville frequencies,
challenge this paradigm as well. Let us now focus on the scenario of uniform
approximation by periodic potentials, and hence the class of limit-periodic
potentials.

Recall that it had been known since the 1980’s that the set of limit-periodic V
for which the Schrödinger operator with potential V has purely absolutely
continuous spectrum is dense.

Theorem (Avila 09, D.-Gan 11)

The set of limit-periodic V for which the Schrödinger operator with potential
V has purely singular continuous spectrum is a dense Gδ.

Theorem (D.-Gorodetski 16)

The set of limit-periodic V for which the Schrödinger operator with potential
V has pure point spectrum is dense.
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In fact, the proof of the latter result actually gives the following stronger
statement:

Theorem (D.-Gorodetski 16)

For every bounded V and every ε > 0, there is a limit-periodic potential Vlp

with ‖Vlp‖∞ < ε such that the Schrödinger operator with potential V + Vlp

has pure point spectrum.
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The Classical Kunz-Souillard Method

The classical Kunz-Souillard method was devised in 1980. It applies to the
discrete one-dimensional Anderson model, that is, to V ’s in our context given
by i.i.d. random variables. The common distribution of the random variables is
required to be absolutely continuous with a reasonably nice density.

The quite unique feature of this method is that it establishes dynamical
localization (i.e., the non-spreading of wavepackets governed by the
time-dependent Schrödinger equation) directly, and only then derives spectral
localization (i.e., pure point spectrum with exponentially decaying
eigenfunctions).

The independence of the potential values is crucial to the method and the
proof. It is therefore far from clear what its relevance might be in the study of
almost periodic Schrödinger operators. It nevertheless turns out that there is
an extension of the Kunz-Souillard method that incorporates correlations and
which applies to almost periodic potentials, and in fact yields the 2016 results
described above! This extension was developed in a 2016 paper with Anton
Gorodetski.
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An Extension of the Kunz-Souillard Method

For our application to quasi-periodic potentials, we use the following extension
of the Kunz-Souillard method:

Theorem (D.-Gorodetski 16)

Let {ξn}∞n=−∞ be independent random variables with distributions rn(x) dx,
where rn(x) = a−1

n r(a−1
n x), an > 0, and r is compactly supported and bounded.

Then, there are constants d = d(r), λ = λ(r) > 0 such that the following
holds. Assume the sequence {an}∞n=−∞ is bounded and such that

∑
n∈Z

a−1/2
n e

−d
∑b |n|−1

2
c

j=1 min{a2(sgn n)2j ,a
2
(sgn n)(2j−1),λ} <∞. (1)

Let {χn}∞n=−∞ be independent (not necessarily identically distributed) random
variables that are uniformly bounded.
Let {Ln : R2n−1 → R}∞n=−∞, n ∈ Z \ {0}, be a collection of linear functionals
with uniformly bounded norms.
Then, almost surely, the discrete Schrödinger operator with the potential

V : Z→ R, V (n) = ξn + χn + Ln(ξ−|n|+1, . . . , ξ|n|−1)

has pure point spectrum (where L0(ξ−|n|+1, . . . , ξ|n|−1) := 0).
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has pure point spectrum (where L0(ξ−|n|+1, . . . , ξ|n|−1) := 0).
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For our application to limit-periodic potentials, we need a more general version
of the extension of the Kunz-Souillard method discussed above:

Theorem (D.-Gorodetski 16)

Suppose the independent random variables {ξn,k}n∈Z,k≥|m(n)| are given, where
ξn,k is distributed with respect to rk(x) dx, rk(x) = ε−1

k r(ε−1
k x), εk > 0, and∑

εk <∞. Suppose also that a collection of linear functionals
Ln,k : {{ξs,k} : |m(s)| < |m(n)|} → R is given, with uniformly bounded ‖ · ‖+
norms.
Then there is a constant d = d(r) > 0 such that the following holds. Suppose
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Let {χn}∞n=−∞ be independent random variables that are uniformly bounded.
Then, the discrete Schrödinger operator with the potential

V : Z→ R, V (n) =
∑

k≥|m(n)|

ξn,k + χn +

|m(n)|−1∑
k=0

Ln,k({ξs,k}, |m(s)| < |m(n)|)

almost surely has pure point spectrum.
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