The discrete Laplacian of a 2-simplicial complex

Yassin CHEBBI

Faculty of Sciences of Bizerte and University of Nantes

Potsdam, 1^{st} Aout 2017

• Basic Concepts

2 The discrete Laplacian

Potsdam, 1st Aout 2017

2 / 29

- Basic Concepts
- **2** The discrete Laplacian
- \bullet χ -completeness

- Basic Concepts
- **2** The discrete Laplacian
- χ -completeness
- Self-adjointness of the Laplacian

- Basic Concepts
- **2** The discrete Laplacian
- χ -completeness
- Self-adjointness of the Laplacian

Basic Concepts

Potsdam, 1st Aout 2017

3/29

Yassin CHEBBI Faculty of Scien Laplacian of a 2-simplicial complex

- Let $\mathcal{K} = (\mathcal{V}, \mathcal{E})$ be a graph where :
 - \mathcal{V} is the countable set of vertices.
 - $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges.
- $\bullet~\mathcal{E}$ is without loops and symmetric :

 $x \in \mathcal{V} \Rightarrow (x, x) \notin \mathcal{E}, \ (x, y) \in \mathcal{E} \Rightarrow (y, x) \in \mathcal{E}$

Potsdam, 1st Aout 2017

- Let $\mathcal{K} = (\mathcal{V}, \mathcal{E})$ be a graph where :
 - \mathcal{V} is the countable set of vertices.
 - $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges.
- $\bullet~\mathcal{E}$ is without loops and symmetric :

$$x \in \mathcal{V} \Rightarrow (x,x) \notin \mathcal{E}, \ \ (x,y) \in \mathcal{E} \Rightarrow (y,x) \in \mathcal{E}$$

• $x, y \in \mathcal{V}$ are neighbors, if $(x, y) \in \mathcal{E}$ and we denote $x \sim y$.

Potsdam, 1st Aout 201

- Let $\mathcal{K} = (\mathcal{V}, \mathcal{E})$ be a graph where :
 - \mathcal{V} is the countable set of vertices.
 - $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges.
- \mathcal{E} is without loops and symmetric :

$$x \in \mathcal{V} \Rightarrow (x,x) \notin \mathcal{E}, \ \ (x,y) \in \mathcal{E} \Rightarrow (y,x) \in \mathcal{E}$$

• $x, y \in \mathcal{V}$ are neighbors, if $(x, y) \in \mathcal{E}$ and we denote $x \sim y$.

• A graph \mathcal{K} is oriented, if there is a partition of \mathcal{E} :

$$\mathcal{E} = \mathcal{E}^- \cup \mathcal{E}^+.$$

 $(x, y) \in \mathcal{E}^+ \Leftrightarrow (y, x) \in \mathcal{E}^-$

- Let $\mathcal{K} = (\mathcal{V}, \mathcal{E})$ be a graph where :
 - \mathcal{V} is the countable set of vertices.
 - $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges.
- \mathcal{E} is without loops and symmetric :

$$x \in \mathcal{V} \Rightarrow (x,x) \notin \mathcal{E}, \hspace{0.2cm} (x,y) \in \mathcal{E} \Rightarrow (y,x) \in \mathcal{E}$$

- $x, y \in \mathcal{V}$ are neighbors, if $(x, y) \in \mathcal{E}$ and we denote $x \sim y$.
- A graph \mathcal{K} is oriented, if there is a partition of \mathcal{E} :

$$\mathcal{E} = \mathcal{E}^- \cup \mathcal{E}^+.$$
 $(x,y) \in \mathcal{E}^+ \Leftrightarrow (y,x) \in \mathcal{E}^-.$

• For $e = (x, y) \in \mathcal{E}^+$, we denote :

$$e^- = x, e^+ = y$$
 and $-e = (y, x) \in \mathcal{E}^-$.

Potsdam, 1st Aout 201

- Let $\mathcal{K} = (\mathcal{V}, \mathcal{E})$ be a graph where :
 - \mathcal{V} is the countable set of vertices.
 - $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges.
- \mathcal{E} is without loops and symmetric :

$$x \in \mathcal{V} \Rightarrow (x,x) \notin \mathcal{E}, \hspace{0.2cm} (x,y) \in \mathcal{E} \Rightarrow (y,x) \in \mathcal{E}$$

- $x, y \in \mathcal{V}$ are neighbors, if $(x, y) \in \mathcal{E}$ and we denote $x \sim y$.
- A graph \mathcal{K} is oriented, if there is a partition of \mathcal{E} :

$$\mathcal{E} = \mathcal{E}^- \cup \mathcal{E}^+.$$
 $(x,y) \in \mathcal{E}^+ \Leftrightarrow (y,x) \in \mathcal{E}^-.$

• For $e = (x, y) \in \mathcal{E}^+$, we denote : $e^- = x, e^+ = y$ and $-e = (y, x) \in \mathcal{E}^-$.

- The weights :
 - ► $c: \mathcal{V} \to (0, \infty).$
 - ▶ $r: \mathcal{E} \to (0, \infty)$ such that $\forall e \in \mathcal{E}, r(-e) = r(e)$.
- The degree of $x \in \mathcal{V}$ is :

$$deg(x) := \#\{e \in \mathcal{E}, e^- = x\}.$$

▶ A graph \mathcal{K} is of bounded degree, if $\exists N > 0, \forall x \in \mathcal{V}, deg(x) \leq N$.

Potsdam, 1st Aout 201

- The weights :
 - ► $c: \mathcal{V} \to (0, \infty).$
 - ▶ $r: \mathcal{E} \to (0, \infty)$ such that $\forall e \in \mathcal{E}, r(-e) = r(e)$.
- The degree of $x \in \mathcal{V}$ is :

$$deg(x) := \#\{e \in \mathcal{E}, e^- = x\}.$$

A graph K is of bounded degree, if ∃N > 0, ∀x ∈ V, deg(x) ≤ N.
A graph K is locally finite, if :

 $\forall x \in \mathcal{V}, \ deg(x) < \infty.$

- The weights :
 - ► $c: \mathcal{V} \to (0, \infty).$
 - ▶ $r: \mathcal{E} \to (0, \infty)$ such that $\forall e \in \mathcal{E}, r(-e) = r(e)$.
- The degree of $x \in \mathcal{V}$ is :

$$deg(x) := \#\{e \in \mathcal{E}, e^- = x\}.$$

A graph K is of bounded degree, if ∃N > 0, ∀x ∈ V, deg(x) ≤ N.
A graph K is locally finite, if :

$$\forall x \in \mathcal{V}, \ deg(x) < \infty.$$

Potsdam, 1st Aout 20

• A path between $x,y\in \mathcal{V}$ is a finite set of vertices $\{x_i\}_{0\leq i\leq n},$ such that

 $x_0 = x, \ x_n = y \ \text{and}, \ \text{if} \ n \ge 1, \ \forall j, \ 0 \le j \le n-1 \Longrightarrow x_j \sim x_{j+1}.$

Potsdam, 1st Aout 2017

• The path is called a cycle or closed, if $x_0 = x_n$.

• A path between $x,y\in\mathcal{V}$ is a finite set of vertices $\{x_i\}_{0\leq i\leq n},$ such that

 $x_0 = x, \ x_n = y \text{ and}, \text{ if } n \ge 1, \ \forall j, \ 0 \le j \le n-1 \Longrightarrow x_j \sim x_{j+1}.$

The path is called a cycle or closed, if x₀ = x_n.
The combinatorial distance d_{comb} on K is

 $d_{comb}(x, y) = \min\{n, \{x_i\}_{0 \le i \le n} \in \mathcal{V} \text{ a path between } x \text{ and } y\}.$

• A path between $x,y\in\mathcal{V}$ is a finite set of vertices $\{x_i\}_{0\leq i\leq n},$ such that

 $x_0 = x, \ x_n = y \text{ and}, \text{ if } n \ge 1, \ \forall j, \ 0 \le j \le n-1 \Longrightarrow x_j \sim x_{j+1}.$

The path is called a cycle or closed, if x₀ = x_n.
The combinatorial distance d_{comb} on K is

 $d_{comb}(x,y) = \min\{n, \ \{x_i\}_{0 \le i \le n} \in \mathcal{V} \text{ a path between } x \text{ and } y\}.$

• A graph \mathcal{K} is connected, if

 $\forall x, y \in \mathcal{V}, \exists \{x_i\}_{0 \le i \le n}$ a path between x and y.

• A path between $x,y\in\mathcal{V}$ is a finite set of vertices $\{x_i\}_{0\leq i\leq n},$ such that

 $x_0 = x, \ x_n = y \ \text{and}, \ \text{if} \ n \ge 1, \ \forall j, \ 0 \le j \le n-1 \Longrightarrow x_j \sim x_{j+1}.$

The path is called a cycle or closed, if x₀ = x_n.
The combinatorial distance d_{comb} on K is

 $d_{comb}(x,y) = \min\{n, \ \{x_i\}_{0 \le i \le n} \in \mathcal{V} \text{ a path between } x \text{ and } y\}.$

• A graph \mathcal{K} is connected, if

 $\forall x, y \in \mathcal{V}, \exists \{x_i\}_{0 \le i \le n}$ a path between x and y.

• A triangle is closed path of length 3. Let $Tr \subseteq \mathcal{V}^3$ the set of all triangles of \mathcal{K} .

Potsdam, 1st Aout 2017

• We consider $\mathcal{F} \subseteq$ Tr the set of oriented triangular faces.

• A triangle is closed path of length 3. Let $Tr \subseteq \mathcal{V}^3$ the set of all triangles of \mathcal{K} .

Potsdam, 1st Aout 2017

• We consider $\mathcal{F} \subseteq$ Tr the set of oriented triangular faces.

- A triangle is closed path of length 3. Let $Tr \subseteq \mathcal{V}^3$ the set of all triangles of \mathcal{K} .
- We consider $\mathcal{F} \subseteq$ Tr the set of oriented triangular faces.

Definition

A triangulation $\mathcal{T} = (\mathcal{K}, \mathcal{F})$ is a 2-simplicial complex such that all the faces are triangles.

Potsdam, 1st Aout 201

- A triangle is closed path of length 3. Let $Tr \subseteq \mathcal{V}^3$ the set of all triangles of \mathcal{K} .
- We consider $\mathcal{F} \subseteq$ Tr the set of oriented triangular faces.

Definition

A triangulation $\mathcal{T} = (\mathcal{K}, \mathcal{F})$ is a 2-simplicial complex such that all the faces are triangles.

• Let $s : \mathcal{F} \to (0, \infty)$ the weight on oriented faces with $\forall \varpi \in \mathcal{F}, \ s(-\varpi) = s(\varpi).$

8/29

• Let $s: \mathcal{F} \to (0, \infty)$ the weight on oriented faces with $\forall \varpi \in \mathcal{F}, \ s(-\varpi) = s(\varpi)$.

Potsdam, 1st Aout 2017

• A triangulation is simple, if c = r = s = 1.

- Let $s: \mathcal{F} \to (0, \infty)$ the weight on oriented faces with $\forall \varpi \in \mathcal{F}, \ s(-\varpi) = s(\varpi).$
- A triangulation is simple, if c = r = s = 1.
- For $e \in \mathcal{E}$, we also denote $(e^-, e^+, x) \in \mathcal{F}$ by (e, x).
- The set of vertices belonging to $e \in \mathcal{E}$ is given by

$$\mathcal{F}_e := \{x \in \mathcal{V}, (e, x) \in \mathcal{F}\} \subseteq \mathcal{V}(e^-) \cap \mathcal{V}(e^+)$$

Potsdam, 1st Aout 2017

- Let $s: \mathcal{F} \to (0, \infty)$ the weight on oriented faces with $\forall \varpi \in \mathcal{F}, \ s(-\varpi) = s(\varpi).$
- A triangulation is simple, if c = r = s = 1.
- For $e \in \mathcal{E}$, we also denote $(e^-, e^+, x) \in \mathcal{F}$ by (e, x).
- The set of vertices belonging to $e \in \mathcal{E}$ is given by

$$\mathcal{F}_e := \{x \in \mathcal{V}, \ (e, x) \in \mathcal{F}\} \subseteq \mathcal{V}(e^-) \cap \mathcal{V}(e^+)$$

Figure : Triangulation

9 / 29

Yaushu CHEADEI Faculty of Scien Laplacian of a 2-simplicial complex

Functions spaces

• Let us give

- $\blacktriangleright \ \mathcal{C}(\mathcal{V}) = \mathbb{C}^{\mathcal{V}}.$
- $\blacktriangleright \ \mathcal{C}(\mathcal{E}) = \{ \varphi : \mathcal{E} \to \mathbb{C}, \ \varphi(-e) = -\varphi(e) \}.$
- $\mathcal{C}(\mathcal{F}) = \{\phi : \mathcal{F} \to \mathbb{C}, \phi(-\sigma) = -\phi(\sigma)\}.$

The subsets of complex finite support functions are denoted respectively $\mathcal{C}_c(\mathcal{V})$, $\mathcal{C}_c(\mathcal{E})$ and $\mathcal{C}_c(\mathcal{F})$.

Functions spaces

• Let us give

- $\blacktriangleright \ \mathcal{C}(\mathcal{V}) = \mathbb{C}^{\mathcal{V}}.$
- $\blacktriangleright \ \mathcal{C}(\mathcal{E}) = \{ \varphi : \mathcal{E} \to \mathbb{C}, \ \varphi(-e) = -\varphi(e) \}.$
- $\blacktriangleright \ \mathcal{C}(\mathcal{F}) = \{ \phi : \mathcal{F} \to \mathbb{C}, \ \phi(-\sigma) = -\phi(\sigma) \}.$

The subsets of complex finite support functions are denoted respectively $\mathcal{C}_{c}(\mathcal{V})$, $\mathcal{C}_{c}(\mathcal{E})$ and $\mathcal{C}_{c}(\mathcal{F})$.

• The Hilbert spaces are :

$$l^2(\mathcal{V}) := \{f \in \mathcal{C}(\mathcal{V}), \ \sum_{x \in \mathcal{V}} c(x) | f(x) |^2 < \infty \}$$

with the inner product

$$\langle f,g\rangle_{I^{2}(\mathcal{V})}:=\sum_{x\in\mathcal{V}}c(x)f(x)\overline{g}(x).$$

$$l^2(\mathcal{E}) := \{ arphi \in \mathcal{C}(\mathcal{E}), \ \sum_{e \in \mathcal{E}} r(e) | arphi(e) |^2 < \infty \}$$

with the inner product

$$\langle \varphi, \psi \rangle_{l^{2}(\mathcal{E})} := \frac{1}{2} \sum_{e \in \mathcal{E}} r(e) \varphi(e) \overline{\psi}(e).$$

$$l^2(\mathcal{F}):=\{\phi\in\mathcal{C}(\mathcal{F}),\;\sum_{arpi\in\mathcal{F}}m{s}(arpi)|\phi(arpi)|^2<\infty\}$$

with the inner product

$$\langle \phi_1, \phi_2 \rangle_{l^2(\mathcal{F})} = \frac{1}{6} \sum_{(x,y,z) \in \mathcal{F}} s(x,y,z) \phi_1(x,y,z) \overline{\phi_2}(x,y,z).$$

Potsdam, 1st Aout 2017

~~ 12 / 29

Yassin CHEBBI Faculty of Scien Laplacian of a 2-simplicial complex

The discrete Laplacian

13

Potsdam, 1st Aout 2017

Yassin CHEBBI Faculty of Scien Laplacian of a 2-simplicial complex

• The difference operator:
$$d^0 : C_c(\mathcal{V}) \longrightarrow C_c(\mathcal{E})$$
 is given by
 $d^0(f)(e) = f(e^+) - f(e^-).$

• <u>The co-boundary operator</u>: $\delta^0 : \mathcal{C}_c(\mathcal{E}) \longrightarrow \mathcal{C}_c(\mathcal{V})$ is given by

$$\delta^{0}(\varphi)(x) = \frac{1}{c(x)} \sum_{e,e^{+}=x} r(e)\varphi(e).$$

14

<u>The exterior derivative</u>: d¹: C_c(E) → C_c(F) is given by d¹(ψ)(x, y, z) = ψ(x, y) + ψ(y, z) + ψ(z, x).
<u>The co-exterior derivative</u>: δ¹: C_c(F) → C_c(E) is given by δ¹(φ)(e) = 1/(e) ∑_{x∈E} s(e, x)φ(e, x).

Potsdam, 1st Aout 2017 / 29

Yassin CHEBBI Faculty of Scien Laplacian of a 2-simplicial complex

• <u>The Gauß-Bonnet operator on \mathcal{T} </u>: It is the symmetric operator of Dirac type $\mathcal{T} : C_c(\mathcal{V}) \oplus C_c(\mathcal{E}) \oplus C_c(\mathcal{F}) \circlearrowleft$ given by

$$T(f,\varphi,\phi) = (\delta^0\varphi, d^0f + \delta^1\phi, d^1\varphi).$$

• The discrete Laplacian on \mathcal{T} :

$$\mathcal{L} := T^2 : \mathcal{C}_c(\mathcal{V}) \oplus \mathcal{C}_c(\mathcal{E}) \oplus \mathcal{C}_c(\mathcal{F}) \circlearrowleft$$

is given by

$$\mathcal{L}(f,\varphi,\phi) = (\delta^0 d^0 f, (d^0 \delta^0 + \delta^1 d^1)\varphi, d^1 \delta^1 \phi).$$

• We can write

$$\mathcal{L} := \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \mathcal{L}_2$$

where

▶ \mathcal{L}_0 is the discrete Laplacian acting on $\mathcal{C}_c(\mathcal{V})$ given by

$$\mathcal{L}_0(f)(x) := \delta^0 d^0(f)(x) = rac{1}{c(x)} \sum_{e,e^+=x} r(e) d^0(f)(e).$$

• $\mathcal{L}_1 = \mathcal{L}_1^- + \mathcal{L}_1^+ = d^0 \delta^0 + \delta^1 d^1$ is the discrete Laplacian acting on $\mathcal{C}_c(\mathcal{E})$ given by

$$\mathcal{L}_{1}(\varphi)(x,y) = \underbrace{\frac{1}{c(y)} \sum_{e,e^{+}=y} r(e)\varphi(e) - \frac{1}{c(x)} \sum_{e,e^{+}=x} r(e)\varphi(e)}_{\mathcal{L}_{1}^{-}(\varphi)(x,y)} + \underbrace{\frac{1}{r(x,y)} \sum_{z \in \mathcal{F}_{(x,y)}} s(x,y,z) d^{1}(\varphi)(x,y,z)}_{\mathcal{L}_{1}^{+}(\varphi)(x,y)}.$$

• • \mathcal{L}_2 is the discrete Laplacian acting on $\mathcal{C}_c(\mathcal{F})$ given by

$$\begin{split} \mathcal{L}_{2}(\phi)(x,y,z) &:= d^{1}\delta^{1}(\phi)(x,y,z) \\ &= \frac{1}{r(x,y)} \sum_{u \in \mathcal{F}_{(x,y)}} s(x,y,u)\phi(x,y,u) \\ &+ \frac{1}{r(y,z)} \sum_{u \in \mathcal{F}_{(y,z)}} s(y,z,u)\phi(y,z,u) \\ &+ \frac{1}{r(z,x)} \sum_{u \in \mathcal{F}_{(z,x)}} s(z,x,u)\phi(z,x,u), \end{split}$$

χ -completeness

19

Yusein CHEBBI Faculty of Scien Laplacian of a 2-simplicial complex

A graph K = (V, E) is χ-complet if there exists an increasing sequence of finite sets (B_n)_{n∈ℕ} such that V = ∪_{n∈ℕ}B_n and there exist related functions χ_n satisfying the following three conditions :

•
$$\chi_n \in \mathcal{C}_c(\mathcal{V}), \ 0 \leq \chi_n \leq 1.$$

•
$$x \in \mathcal{B}_n \Rightarrow \chi_n(x) = 1.$$

▶ $\exists C > 0$ such that $\forall n \in \mathbb{N}, x \in \mathcal{V}$

$$\frac{1}{c(x)}\sum_{e\in\mathcal{E},e^{\pm}=x}r(e)|d^{0}\chi_{n}(e)|^{2}\leq C.$$

📱 C. Anné & N. Torki-Hamza

The Gauß-Bonnet operator of an infinite graph; Analysis and Mathematical Physics 5 (2), 137-159 (2015)

Definition

A triangulation \mathcal{T} is χ -complete, if

- \mathcal{K} is χ -complet.
- $\exists M > 0, \forall n \in \mathbb{N}, e \in \mathcal{E}$, such that

$$\frac{1}{r(e)}\sum_{x\in\mathcal{F}_e} s(e,x)|d^0\chi_n(e^-,x)+d^0\chi_n(e^+,x)|^2 \le M.$$

Proposition

Let \mathcal{T} be a simple triangulation of bounded degree then \mathcal{T} is a χ -complete triangulation.

Definition

A triangulation \mathcal{T} is χ -complete, if

- \mathcal{K} is χ -complet.
- $\exists M > 0, \forall n \in \mathbb{N}, e \in \mathcal{E}$, such that

$$\frac{1}{r(e)}\sum_{x\in\mathcal{F}_e}s(e,x)|d^0\chi_n(e^-,x)+d^0\chi_n(e^+,x)|^2\leq M.$$

Proposition

Let \mathcal{T} be a simple triangulation of bounded degree then \mathcal{T} is a χ -complete triangulation.

Potsdam, 1st Aout 2017

Idea of proof

• Given $O \in \mathcal{V}$, let the ball \mathcal{B}_n defined by :

$$\mathcal{B}_n = \{x \in \mathcal{V}, \ d_{comb}(O, x) \leq n\}.$$

• We set the cut-off function $\chi_n \in \mathcal{C}_c(\mathcal{V})$ as follow :

$$\chi_n(x) := \left(\frac{2n - d_{comb}(O, x)}{n} \vee 0\right) \wedge 1, \ \forall n \in \mathbb{N}^*.$$

i) If $x \in \mathcal{B}_n \Rightarrow \chi_n(x) = 1$ and $x \in \mathcal{B}_{2n}^c \Rightarrow \chi_n(x) = 0$. ii) For $e \in \mathcal{E}$, we have that

$$|d^{0}\chi_{n}(e)| \leq \frac{1}{n} |d_{comb}(O, e^{+}) - d_{comb}(O, e^{-})| = \frac{1}{n}$$

Idea of proof

• Given $O \in \mathcal{V}$, let the ball \mathcal{B}_n defined by :

$$\mathcal{B}_n = \{x \in \mathcal{V}, \ d_{comb}(O, x) \leq n\}.$$

• We set the cut-off function $\chi_n \in \mathcal{C}_c(\mathcal{V})$ as follow :

$$\chi_n(x) := \left(\frac{2n - d_{comb}(O, x)}{n} \lor 0\right) \land 1, \ \forall n \in \mathbb{N}^*.$$

i) If $x \in \mathcal{B}_n \Rightarrow \chi_n(x) = 1$ and $x \in \mathcal{B}_{2n}^c \Rightarrow \chi_n(x) = 0$. ii) For $e \in \mathcal{E}$, we have that

$$|d^0\chi_n(e)| \leq \frac{1}{n} \left| d_{comb}(O, e^+) - d_{comb}(O, e^-) \right| = \frac{1}{n}$$

Potsdam, 1st Aout 2017

Figure : A 6-regular triangulation

Self-adjointness of the Laplacian

Potsdam, 1st Aout 2017

24 29

Yassin CHEBBI Faculty of Scien Laplacian of a 2-simplicial complex

The idea of studying \mathcal{T} rather than \mathcal{L} comes back to :

- P. R. Chernoff in the case of complete manifolds
 - P.R. Chernoff

Essential self-adjointness of powers of generators of hyperbolic equations, J. Funct. Anal. 12, 401-414, 1973.

• C. Anné and N. Torki-Hamza in the graphs

C. Anné & N. Torki-Hamza The Gauß-Bonnet operator of an infinite graph; Analysis and Mathematical Physics 5 (2), 137-159 (2015)

The idea of studying \mathcal{T} rather than \mathcal{L} comes back to :

- P. R. Chernoff in the case of complete manifolds
 - P.R. Chernoff Essential self-adjointness of powers of generators of hyperbolic equations, J. Funct. Anal. 12, 401-414, 1973.
- C. Anné and N. Torki-Hamza in the graphs
 - C. Anné & N. Torki-Hamza
 The Gauß-Bonnet operator of an infinite graph; Analysis and Mathematical Physics 5 (2), 137-159 (2015)

Let \mathcal{T} be a χ -complete triangulation. Then

T is e.s.a $\Leftrightarrow \mathcal{L}$ is e.s.a

This result is based on the

Theorem "Von Neumann"

Let T be a densely defined closed operator then TT* and T*T are self-adjoint.

Potsdam, 1st Aout 2017

Let \mathcal{T} be a χ -complete triangulation. Then

T is e.s.a $\Leftrightarrow \mathcal{L}$ is e.s.a

This result is based on the

Theorem "Von Neumann"

Let T be a densely defined closed operator then TT* and T*T are self-adjoint.

Let \mathcal{T} be a χ -complete triangulation then the operator \mathcal{T} is essentially self-adjoint on $\mathcal{C}_c(\mathcal{V}) \oplus \mathcal{C}_c(\mathcal{E}) \oplus \mathcal{C}_c(\mathcal{F})$.

Corollary

Let \mathcal{T} be a χ -complete triangulation then \mathcal{L} is essentially self-adjoint on $\mathcal{C}_c(\mathcal{V}) \oplus \mathcal{C}_c(\mathcal{E}) \oplus \mathcal{C}_c(\mathcal{F}).$

Let \mathcal{T} be a χ -complete triangulation then the operator \mathcal{T} is essentially self-adjoint on $\mathcal{C}_c(\mathcal{V}) \oplus \mathcal{C}_c(\mathcal{E}) \oplus \mathcal{C}_c(\mathcal{F})$.

Corollary

Let \mathcal{T} be a χ -complete triangulation then \mathcal{L} is essentially self-adjoint on $\mathcal{C}_{c}(\mathcal{V}) \oplus \mathcal{C}_{c}(\mathcal{E}) \oplus \mathcal{C}_{c}(\mathcal{F}).$

To obtain this result we need

Theorem" C. Anné and N. Torki-Hamza"

Let \mathcal{K} be a χ -complet graph then $d^0 + \delta^0$ is essentially self-adjoint on $\mathcal{C}_c(\mathcal{V}) \oplus \mathcal{C}_c(\mathcal{E})$.

Proposition

Let \mathcal{T} be a χ -complete triangulation then $d^1 + \delta^1$ is essentially self-adjoint on $\mathcal{C}_c(\mathcal{E}) \oplus \mathcal{C}_c(\mathcal{F})$.

To obtain this result we need

Theorem" C. Anné and N. Torki-Hamza"

Let \mathcal{K} be a χ -complet graph then $d^0 + \delta^0$ is essentially self-adjoint on $\mathcal{C}_c(\mathcal{V}) \oplus \mathcal{C}_c(\mathcal{E})$.

Proposition

Let \mathcal{T} be a χ -complete triangulation then $d^1 + \delta^1$ is essentially self-adjoint on $\mathcal{C}_c(\mathcal{E}) \oplus \mathcal{C}_c(\mathcal{F})$.

Lemma

Let \mathcal{T} be a χ -complete triangulation then

$$\mathsf{Dom}(\overline{\mathcal{T}}) = \mathsf{Dom}(\overline{d^0}) \oplus \left(\mathsf{Dom}(\overline{\delta^0}) \cap \mathsf{Dom}(\overline{d^1})\right) \oplus \mathsf{Dom}(\overline{\delta^1}).$$

To obtain this result we need

Theorem" C. Anné and N. Torki-Hamza"

Let \mathcal{K} be a χ -complet graph then $d^0 + \delta^0$ is essentially self-adjoint on $\mathcal{C}_c(\mathcal{V}) \oplus \mathcal{C}_c(\mathcal{E})$.

Proposition

Let \mathcal{T} be a χ -complete triangulation then $d^1 + \delta^1$ is essentially self-adjoint on $\mathcal{C}_c(\mathcal{E}) \oplus \mathcal{C}_c(\mathcal{F})$.

Lemma

Let \mathcal{T} be a χ -complete triangulation then

$$\mathsf{Dom}(\overline{T}) = \mathsf{Dom}(\overline{d^0}) \oplus \left(\mathsf{Dom}(\overline{\delta^0}) \cap \mathsf{Dom}(\overline{d^1})\right) \oplus \mathsf{Dom}(\overline{\delta^1}).$$

Thanks

Yassin CHEBBI Faculty of Scien Laplacian of a 2-simplicial complex