The discrete Laplacian of a 2-simplicial complex

Yassin CHEBBI
Faculty of Sciences of Bizerte and University of Nantes

Potsdam, $1^{\text {st }}$ Aout 2017

Table of Contents

- Basic Concepts
- The discrete Laplacian

Table of Contents

- Basic Concepts
© The discrete Laplacian
- χ-completeness

Table of Contents

- Basic Concepts
- The discrete Laplacian
- χ-completeness
- Self-adjointness of the Laplacian

Table of Contents

- Basic Concepts
- The discrete Laplacian
- χ-completeness
- Self-adjointness of the Laplacian

Part. 1

Basic Concepts

Notion of Graphs

- Let $\mathcal{K}=(\mathcal{V}, \mathcal{E})$ be a graph where :
- \mathcal{V} is the countable set of vertices.
- $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges.
- \mathcal{E} is without loops and symmetric :

$$
x \in \mathcal{V} \Rightarrow(x, x) \notin \mathcal{E}, \quad(x, y) \in \mathcal{E} \Rightarrow(y, x) \in \mathcal{E}
$$

Notion of Graphs

- Let $\mathcal{K}=(\mathcal{V}, \mathcal{E})$ be a graph where :
- \mathcal{V} is the countable set of vertices.
- $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges.
- \mathcal{E} is without loops and symmetric:

$$
x \in \mathcal{V} \Rightarrow(x, x) \notin \mathcal{E}, \quad(x, y) \in \mathcal{E} \Rightarrow(y, x) \in \mathcal{E}
$$

- $x, y \in \mathcal{V}$ are neighbors, if $(x, y) \in \mathcal{E}$ and we denote $x \sim y$.

Notion of Graphs

- Let $\mathcal{K}=(\mathcal{V}, \mathcal{E})$ be a graph where :
- \mathcal{V} is the countable set of vertices.
- $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges.
- \mathcal{E} is without loops and symmetric :

$$
x \in \mathcal{V} \Rightarrow(x, x) \notin \mathcal{E}, \quad(x, y) \in \mathcal{E} \Rightarrow(y, x) \in \mathcal{E}
$$

- $x, y \in \mathcal{V}$ are neighbors, if $(x, y) \in \mathcal{E}$ and we denote $x \sim y$.
- A graph \mathcal{K} is oriented, if there is a partition of \mathcal{E} :

$$
\begin{gathered}
\mathcal{E}=\mathcal{E}^{-} \cup \mathcal{E}^{+} . \\
(x, y) \in \mathcal{E}^{+} \Leftrightarrow(y, x) \in \mathcal{E}^{-} .
\end{gathered}
$$

Notion of Graphs

- Let $\mathcal{K}=(\mathcal{V}, \mathcal{E})$ be a graph where :
- \mathcal{V} is the countable set of vertices.
- $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges.
- \mathcal{E} is without loops and symmetric :

$$
x \in \mathcal{V} \Rightarrow(x, x) \notin \mathcal{E}, \quad(x, y) \in \mathcal{E} \Rightarrow(y, x) \in \mathcal{E}
$$

- $x, y \in \mathcal{V}$ are neighbors, if $(x, y) \in \mathcal{E}$ and we denote $x \sim y$.
- A graph \mathcal{K} is oriented, if there is a partition of \mathcal{E} :

$$
\begin{gathered}
\mathcal{E}=\mathcal{E}^{-} \cup \mathcal{E}^{+} . \\
(x, y) \in \mathcal{E}^{+} \Leftrightarrow(y, x) \in \mathcal{E}^{-} .
\end{gathered}
$$

- For $e=(x, y) \in \mathcal{E}^{+}$, we denote :

$$
e^{-}=x, e^{+}=y \text { and }-e=(y, x) \in \mathcal{E}^{-} .
$$

Notion of Graphs

- Let $\mathcal{K}=(\mathcal{V}, \mathcal{E})$ be a graph where :
- \mathcal{V} is the countable set of vertices.
- $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges.
- \mathcal{E} is without loops and symmetric :

$$
x \in \mathcal{V} \Rightarrow(x, x) \notin \mathcal{E}, \quad(x, y) \in \mathcal{E} \Rightarrow(y, x) \in \mathcal{E}
$$

- $x, y \in \mathcal{V}$ are neighbors, if $(x, y) \in \mathcal{E}$ and we denote $x \sim y$.
- A graph \mathcal{K} is oriented, if there is a partition of \mathcal{E} :

$$
\begin{gathered}
\mathcal{E}=\mathcal{E}^{-} \cup \mathcal{E}^{+} . \\
(x, y) \in \mathcal{E}^{+} \Leftrightarrow(y, x) \in \mathcal{E}^{-} .
\end{gathered}
$$

- For $e=(x, y) \in \mathcal{E}^{+}$, we denote :

$$
e^{-}=x, e^{+}=y \text { and }-e=(y, x) \in \mathcal{E}^{-}
$$

- The weights :
- $c: \mathcal{V} \rightarrow(0, \infty)$.
- $r: \mathcal{E} \rightarrow(0, \infty)$ such that $\forall e \in \mathcal{E}, r(-e)=r(e)$.
- The degree of $x \in \mathcal{V}$ is :

$$
\operatorname{deg}(x):=\#\left\{e \in \mathcal{E}, e^{-}=x\right\} .
$$

- A graph \mathcal{K} is of bounded degree, if $\exists N>0, \forall x \in \mathcal{V}, \operatorname{deg}(x) \leq N$.
- The weights :
- $c: \mathcal{V} \rightarrow(0, \infty)$.
- $r: \mathcal{E} \rightarrow(0, \infty)$ such that $\forall e \in \mathcal{E}, r(-e)=r(e)$.
- The degree of $x \in \mathcal{V}$ is :

$$
\operatorname{deg}(x):=\#\left\{e \in \mathcal{E}, e^{-}=x\right\}
$$

- A graph \mathcal{K} is of bounded degree, if $\exists N>0, \forall x \in \mathcal{V}, \operatorname{deg}(x) \leq N$.
- A graph \mathcal{K} is locally finite, if :

$$
\forall x \in \mathcal{V}, \operatorname{deg}(x)<\infty
$$

- The weights :
- $c: \mathcal{V} \rightarrow(0, \infty)$.
- $r: \mathcal{E} \rightarrow(0, \infty)$ such that $\forall e \in \mathcal{E}, r(-e)=r(e)$.
- The degree of $x \in \mathcal{V}$ is :

$$
\operatorname{deg}(x):=\#\left\{e \in \mathcal{E}, e^{-}=x\right\}
$$

- A graph \mathcal{K} is of bounded degree, if $\exists N>0, \forall x \in \mathcal{V}, \operatorname{deg}(x) \leq N$.
- A graph \mathcal{K} is locally finite, if :

$$
\forall x \in \mathcal{V}, \operatorname{deg}(x)<\infty
$$

- A path between $x, y \in \mathcal{V}$ is a finite set of vertices $\left\{x_{i}\right\}_{0 \leq i \leq n}$, such that

$$
x_{0}=x, x_{n}=y \text { and, if } n \geq 1, \forall j, 0 \leq j \leq n-1 \Longrightarrow x_{j} \sim x_{j+1}
$$

- The path is called a cycle or closed, if $x_{0}=x_{n}$.
- A path between $x, y \in \mathcal{V}$ is a finite set of vertices $\left\{x_{i}\right\}_{0 \leq i \leq n}$, such that

$$
x_{0}=x, x_{n}=y \text { and, if } n \geq 1, \forall j, 0 \leq j \leq n-1 \Longrightarrow x_{j} \sim x_{j+1}
$$

- The path is called a cycle or closed, if $x_{0}=x_{n}$.
- The combinatorial distance $d_{\text {comb }}$ on \mathcal{K} is $d_{\text {comb }}(x, y)=\min \left\{n,\left\{x_{i}\right\}_{0 \leq i \leq n} \in \mathcal{V}\right.$ a path between x and $\left.y\right\}$.
- A path between $x, y \in \mathcal{V}$ is a finite set of vertices $\left\{x_{i}\right\}_{0 \leq i \leq n}$, such that

$$
x_{0}=x, x_{n}=y \text { and, if } n \geq 1, \forall j, 0 \leq j \leq n-1 \Longrightarrow x_{j} \sim x_{j+1}
$$

- The path is called a cycle or closed, if $x_{0}=x_{n}$.
- The combinatorial distance $d_{\text {comb }}$ on \mathcal{K} is

$$
d_{\text {comb }}(x, y)=\min \left\{n,\left\{x_{i}\right\}_{0 \leq i \leq n} \in \mathcal{V} \text { a path between } \mathrm{x} \text { and } \mathrm{y}\right\}
$$

- A graph \mathcal{K} is connected, if

$$
\forall x, y \in \mathcal{V}, \exists\left\{x_{i}\right\}_{0 \leq i \leq n} \text { a path between } x \text { and } y \text {. }
$$

- A path between $x, y \in \mathcal{V}$ is a finite set of vertices $\left\{x_{i}\right\}_{0 \leq i \leq n}$, such that

$$
x_{0}=x, x_{n}=y \text { and, if } n \geq 1, \forall j, 0 \leq j \leq n-1 \Longrightarrow x_{j} \sim x_{j+1}
$$

- The path is called a cycle or closed, if $x_{0}=x_{n}$.
- The combinatorial distance $d_{\text {comb }}$ on \mathcal{K} is

$$
d_{\text {comb }}(x, y)=\min \left\{n,\left\{x_{i}\right\}_{0 \leq i \leq n} \in \mathcal{V} \text { a path between } \mathrm{x} \text { and } \mathrm{y}\right\}
$$

- A graph \mathcal{K} is connected, if

$$
\forall x, y \in \mathcal{V}, \exists\left\{x_{i}\right\}_{0 \leq i \leq n} \text { a path between } x \text { and } y .
$$

Triangulation

- A triangle is closed path of length 3 . Let $\operatorname{Tr} \subseteq \mathcal{V}^{3}$ the set of all triangles of \mathcal{K}.
- We consider $\mathcal{F} \subseteq \operatorname{Tr}$ the set of oriented triangular faces.

Triangulation

- A triangle is closed path of length 3 . Let $\operatorname{Tr} \subseteq \mathcal{V}^{3}$ the set of all triangles of \mathcal{K}.
- We consider $\mathcal{F} \subseteq \operatorname{Tr}$ the set of oriented triangular faces.
\qquad

Triangulation

- A triangle is closed path of length 3 . Let $\operatorname{Tr} \subseteq \mathcal{V}^{3}$ the set of all triangles of \mathcal{K}.
- We consider $\mathcal{F} \subseteq \operatorname{Tr}$ the set of oriented triangular faces.

Definition
 A triangulation $\mathcal{T}=(\mathcal{K}, \mathcal{F})$ is a 2-simplicial complex such that all the faces are triangles.

Potsdam, $1^{\text {st }}$ Aout $20 \overline{\overline{1}} 7$

Triangulation

- A triangle is closed path of length 3. Let $\operatorname{Tr} \subseteq \mathcal{V}^{3}$ the set of all triangles of \mathcal{K}.
- We consider $\mathcal{F} \subseteq \operatorname{Tr}$ the set of oriented triangular faces.

Definition

A triangulation $\mathcal{T}=(\mathcal{K}, \mathcal{F})$ is a 2 -simplicial complex such that all the faces are triangles.

- For $\varpi=(x, y, z) \in \mathcal{F}$, we have

$$
\begin{gathered}
\varpi=(x, y, z)=(y, z, x)=(z, x, y) \in \mathcal{F} \\
\hat{\mathbb{1}} \\
-\varpi=(y, x, z)=(x, z, y)=(z, y, x) \in \mathcal{F}
\end{gathered}
$$

- Let $s: \mathcal{F} \rightarrow(0, \infty)$ the weight on oriented faces with $\forall \varpi \in \mathcal{F}, s(-\varpi)=s(\varpi)$.
- For $\varpi=(x, y, z) \in \mathcal{F}$, we have

$$
\begin{gathered}
\varpi=(x, y, z)=(y, z, x)=(z, x, y) \in \mathcal{F} \\
\hat{\mathbb{}} \\
-\varpi=(y, x, z)=(x, z, y)=(z, y, x) \in \mathcal{F}
\end{gathered}
$$

- Let $s: \mathcal{F} \rightarrow(0, \infty)$ the weight on oriented faces with $\forall \varpi \in \mathcal{F}, s(-\varpi)=s(\varpi)$.
- A triangulation is simple, if $c=r=s=1$.
- For $\varpi=(x, y, z) \in \mathcal{F}$, we have

\[

\]

- Let $s: \mathcal{F} \rightarrow(0, \infty)$ the weight on oriented faces with $\forall \varpi \in \mathcal{F}, s(-\varpi)=s(\varpi)$.
- A triangulation is simple, if $c=r=s=1$.
- For $e \in \mathcal{E}$, we also denote $\left(e^{-}, e^{+}, x\right) \in \mathcal{F}$ by (e, x).
- The set of vertices belonging to $e \in \mathcal{E}$ is given by

$$
\mathcal{F}_{e}:=\{x \in \mathcal{V},(e, x) \in \mathcal{F}\} \subseteq \mathcal{V}\left(e^{-}\right) \cap \mathcal{V}\left(e^{+}\right)
$$

- For $\varpi=(x, y, z) \in \mathcal{F}$, we have

$$
\begin{gathered}
\varpi=(x, y, z)=(y, z, x)=(z, x, y) \in \mathcal{F} \\
\hat{\mathbb{}} \\
-\varpi=(y, x, z)=(x, z, y)=(z, y, x) \in \mathcal{F}
\end{gathered}
$$

- Let $s: \mathcal{F} \rightarrow(0, \infty)$ the weight on oriented faces with $\forall \varpi \in \mathcal{F}, s(-\varpi)=s(\varpi)$.
- A triangulation is simple, if $c=r=s=1$.
- For $e \in \mathcal{E}$, we also denote $\left(e^{-}, e^{+}, x\right) \in \mathcal{F}$ by (e, x).
- The set of vertices belonging to $e \in \mathcal{E}$ is given by

$$
\mathcal{F}_{e}:=\{x \in \mathcal{V},(e, x) \in \mathcal{F}\} \subseteq \mathcal{V}\left(e^{-}\right) \cap \mathcal{V}\left(e^{+}\right)
$$

Figure: Triangulation
Laplacian of a 2-simplicial complex

Functions spaces

- Let us give
- $\mathcal{C}(\mathcal{V})=\mathbb{C}^{\mathcal{V}}$.
- $\mathcal{C}(\mathcal{E})=\{\varphi: \mathcal{E} \rightarrow \mathbb{C}, \varphi(-e)=-\varphi(e)\}$.
- $\mathcal{C}(\mathcal{F})=\{\phi: \mathcal{F} \rightarrow \mathbb{C}, \phi(-\sigma)=-\phi(\sigma)\}$.

The subsets of complex finite support functions are denoted respectively $\mathcal{C}_{c}(\mathcal{V}), \mathcal{C}_{c}(\mathcal{E})$ and $\mathcal{C}_{c}(\mathcal{F})$.

Functions spaces

- Let us give
- $\mathcal{C}(\mathcal{V})=\mathbb{C}^{\mathcal{V}}$.
- $\mathcal{C}(\mathcal{E})=\{\varphi: \mathcal{E} \rightarrow \mathbb{C}, \varphi(-e)=-\varphi(e)\}$.
- $\mathcal{C}(\mathcal{F})=\{\phi: \mathcal{F} \rightarrow \mathbb{C}, \phi(-\sigma)=-\phi(\sigma)\}$.

The subsets of complex finite support functions are denoted respectively $\mathcal{C}_{c}(\mathcal{V}), \mathcal{C}_{c}(\mathcal{E})$ and $\mathcal{C}_{c}(\mathcal{F})$.

- The Hilbert spaces are :

$$
I^{2}(\mathcal{V}):=\left\{f \in \mathcal{C}(\mathcal{V}), \sum_{x \in \mathcal{V}} c(x)|f(x)|^{2}<\infty\right\}
$$

with the inner product

$$
\begin{gathered}
\langle f, g\rangle_{\boldsymbol{I}^{\mathcal{L}}(\mathcal{V})}:=\sum_{x \in \mathcal{V}} c(x) f(x) \bar{g}(x) . \\
I^{2}(\mathcal{E}):=\left\{\varphi \in \mathcal{C}(\mathcal{E}), \sum_{e \in \mathcal{E}} r(e)|\varphi(e)|^{2}<\infty\right\}
\end{gathered}
$$

with the inner product

$$
\langle\varphi, \psi\rangle_{I^{2}(\mathcal{E})}:=\frac{1}{2} \sum_{e \in \mathcal{E}} r(e) \varphi(e) \bar{\psi}(e) .
$$

$$
I^{2}(\mathcal{F}):=\left\{\phi \in \mathcal{C}(\mathcal{F}), \sum_{\varpi \in \mathcal{F}} s(\varpi)|\phi(\varpi)|^{2}<\infty\right\}
$$

with the inner product

$$
\left\langle\phi_{1}, \phi_{2}\right\rangle_{I^{2}(\mathcal{F})}=\frac{1}{6} \sum_{(x, y, z) \in \mathcal{F}} s(x, y, z) \phi_{1}(x, y, z) \overline{\phi_{2}}(x, y, z) .
$$

Part. 2

The discrete Laplacian

- The difference operator : $d^{0}: \mathcal{C}_{c}(\mathcal{V}) \longrightarrow \mathcal{C}_{c}(\mathcal{E})$ is given by

$$
d^{0}(f)(e)=f\left(e^{+}\right)-f\left(e^{-}\right)
$$

- The co-boundary operator : $\delta^{0}: \mathcal{C}_{c}(\mathcal{E}) \longrightarrow \mathcal{C}_{c}(\mathcal{V})$ is given by

$$
\delta^{0}(\varphi)(x)=\frac{1}{c(x)} \sum_{e, e^{+}=x} r(e) \varphi(e)
$$

- The exterior derivative : $d^{1}: \mathcal{C}_{c}(\mathcal{E}) \longrightarrow \mathcal{C}_{c}(\mathcal{F})$ is given by

$$
d^{1}(\psi)(x, y, z)=\psi(x, y)+\psi(y, z)+\psi(z, x)
$$

- The co-exterior derivative : $\delta^{1}: \mathcal{C}_{c}(\mathcal{F}) \longrightarrow \mathcal{C}_{c}(\mathcal{E})$ is given by

$$
\delta^{1}(\phi)(e)=\frac{1}{r(e)} \sum_{x \in \mathcal{F}_{e}} s(e, x) \phi(e, x)
$$

- The Gauß-Bonnet operator on \mathcal{T} : It is the symmetric operator of Dirac type $T: \mathcal{C}_{c}(\mathcal{V}) \oplus \mathcal{C}_{c}(\mathcal{E}) \oplus \mathcal{C}_{c}(\mathcal{F}) \circlearrowleft$ given by

$$
T(f, \varphi, \phi)=\left(\delta^{0} \varphi, d^{0} f+\delta^{1} \phi, d^{1} \varphi\right)
$$

- The discrete Laplacian on \mathcal{T} :

$$
\mathcal{L}:=T^{2}: \mathcal{C}_{c}(\mathcal{V}) \oplus \mathcal{C}_{c}(\mathcal{E}) \oplus \mathcal{C}_{c}(\mathcal{F}) \circlearrowleft
$$

is given by

$$
\mathcal{L}(f, \varphi, \phi)=\left(\delta^{0} d^{0} f,\left(d^{0} \delta^{0}+\delta^{1} d^{1}\right) \varphi, d^{1} \delta^{1} \phi\right) .
$$

- We can write

$$
\mathcal{L}:=\mathcal{L}_{0} \oplus \mathcal{L}_{1} \oplus \mathcal{L}_{2}
$$

where

- \mathcal{L}_{0} is the discrete Laplacian acting on $\mathcal{C}_{c}(\mathcal{V})$ given by

$$
\mathcal{L}_{0}(f)(x):=\delta^{0} d^{0}(f)(x)=\frac{1}{c(x)} \sum_{e, e^{+}=x} r(e) d^{0}(f)(e)
$$

- $\mathcal{L}_{1}=\mathcal{L}_{1}^{-}+\mathcal{L}_{1}^{+}=d^{0} \delta^{0}+\delta^{1} d^{1}$ is the discrete Laplacian acting on $\mathcal{C}_{c}(\mathcal{E})$ given by

$$
\begin{aligned}
\mathcal{L}_{1}(\varphi)(x, y) & =\underbrace{\frac{1}{c(y)} \sum_{e, e^{+}=y} r(e) \varphi(e)-\frac{1}{c(x)} \sum_{e, e^{+}=x} r(e) \varphi(e)}_{\mathcal{L}_{1}^{-}(\varphi)(x, y)} \\
& +\underbrace{\frac{1}{r(x, y)} \sum_{z \in \mathcal{F}_{(x, y)}} s(x, y, z) d^{1}(\varphi)(x, y, z)}_{\mathcal{L}_{1}^{+}(\varphi)(x, y)} .
\end{aligned}
$$

- \mathcal{L}_{2} is the discrete Laplacian acting on $\mathcal{C}_{c}(\mathcal{F})$ given by

$$
\begin{aligned}
\mathcal{L}_{2}(\phi)(x, y, z) & :=d^{1} \delta^{1}(\phi)(x, y, z) \\
& =\frac{1}{r(x, y)} \sum_{u \in \mathcal{F}_{(x, y)}} s(x, y, u) \phi(x, y, u) \\
& +\frac{1}{r(y, z)} \sum_{u \in \mathcal{F}_{(y, z)}} s(y, z, u) \phi(y, z, u) \\
& +\frac{1}{r(z, x)} \sum_{u \in \mathcal{F}_{(z, x)}} s(z, x, u) \phi(z, x, u),
\end{aligned}
$$

Part. 3

$$
\chi \text {-completeness }
$$

- A graph $\mathcal{K}=(\mathcal{V}, \mathcal{E})$ is χ-complet if there exists an increasing sequence of finite sets $\left(\mathcal{B}_{n}\right)_{n \in \mathbb{N}}$ such that $\mathcal{V}=\cup_{n \in \mathbb{N}} \mathcal{B}_{n}$ and there exist related functions χ_{n} satisfying the following three conditions :
- $\chi_{n} \in \mathcal{C}_{c}(\mathcal{V}), 0 \leq \chi_{n} \leq 1$.
- $x \in \mathcal{B}_{n} \Rightarrow \chi_{n}(x)=1$.
- $\exists C>0$ such that $\forall n \in \mathbb{N}, x \in \mathcal{V}$

$$
\frac{1}{c(x)} \sum_{e \in \mathcal{E}, e^{ \pm}=x} r(e)\left|d^{0} \chi_{n}(e)\right|^{2} \leq C
$$

围
C. Anné \& N. Torki-Hamza

The Gauß-Bonnet operator of an infinite graph; Analysis and Mathematical Physics 5 (2), 137-159 (2015)

Definition

A triangulation \mathcal{T} is χ-complete, if

- \mathcal{K} is χ-complet.
- $\exists M>0, \forall n \in \mathbb{N}, e \in \mathcal{E}$, such that

$$
\frac{1}{r(e)} \sum_{x \in \mathcal{F}_{e}} s(e, x)\left|d^{0} \chi_{n}\left(e^{-}, x\right)+d^{0} \chi_{n}\left(e^{+}, x\right)\right|^{2} \leq M
$$

Proposition
 Let \mathcal{T} be a simple triangulation of bounded degree then \mathcal{T} is a χ-complete triangulation.

Definition

A triangulation \mathcal{T} is χ-complete, if

- \mathcal{K} is χ-complet.
- $\exists M>0, \forall n \in \mathbb{N}, e \in \mathcal{E}$, such that

$$
\frac{1}{r(e)} \sum_{x \in \mathcal{F}_{e}} s(e, x)\left|d^{0} \chi_{n}\left(e^{-}, x\right)+d^{0} \chi_{n}\left(e^{+}, x\right)\right|^{2} \leq M
$$

Proposition

Let \mathcal{T} be a simple triangulation of bounded degree then \mathcal{T} is a χ-complete triangulation.

Idea of proof

- Given $O \in \mathcal{V}$, let the ball \mathcal{B}_{n} defined by :

$$
\mathcal{B}_{n}=\left\{x \in \mathcal{V}, d_{c o m b}(O, x) \leq n\right\} .
$$

- We set the cut-off function $\chi_{n} \in \mathcal{C}_{c}(\mathcal{V})$ as follow :

$$
\chi_{n}(x):=\left(\frac{2 n-d_{c o m b}(0, x)}{n} \vee 0\right) \wedge 1, \forall n \in \mathbb{N}^{*} .
$$

i) If $x \in \mathcal{B}_{n} \Rightarrow \chi_{n}(x)=1$ and $x \in \mathcal{B}_{2 n}^{c} \Rightarrow \chi_{n}(x)=0$.
ii) For $e \in \mathcal{E}$, we have that

$$
\left|d^{0} \chi_{n}(e)\right| \leq \frac{1}{n}\left|d_{\text {comb }}\left(O, e^{+}\right)-d_{\text {comb }}\left(O, e^{-}\right)\right|=\frac{1}{n} .
$$

Idea of proof

- Given $O \in \mathcal{V}$, let the ball \mathcal{B}_{n} defined by :

$$
\mathcal{B}_{n}=\left\{x \in \mathcal{V}, d_{\text {comb }}(O, x) \leq n\right\} .
$$

- We set the cut-off function $\chi_{n} \in \mathcal{C}_{c}(\mathcal{V})$ as follow :

$$
\chi_{n}(x):=\left(\frac{2 n-d_{c o m b}(O, x)}{n} \vee 0\right) \wedge 1, \forall n \in \mathbb{N}^{*}
$$

i) If $x \in \mathcal{B}_{n} \Rightarrow \chi_{n}(x)=1$ and $x \in \mathcal{B}_{2 n}^{c} \Rightarrow \chi_{n}(x)=0$.
ii) For $e \in \mathcal{E}$, we have that

$$
\left|d^{0} \chi_{n}(e)\right| \leq \frac{1}{n}\left|d_{c o m b}\left(O, e^{+}\right)-d_{c o m b}\left(O, e^{-}\right)\right|=\frac{1}{n} .
$$

Figure : A 6-regular triangulation

Part. 4

Self-adjointness of the Laplacian

The idea of studying T rather than \mathcal{L} comes back to :

- P. R. Chernoff in the case of complete manifolds

R P.R. Chernoff
Essential self-adjointness of powers of generators of hyperbolic equations, J. Funct. Anal. 12, 401-414, 1973.

- C. Anné and N. Torki-Hamza in the graphs

```
睉 C. Anmé & N. Torki-Hamza
The Gauß-Bonnet operator of an infinite graph; Analysis and
Mathematical Physics 5 (2), 137-159 (2015)
```

The idea of studying T rather than \mathcal{L} comes back to :

- P. R. Chernoff in the case of complete manifolds

R P.R. Chernoff
Essential self-adjointness of powers of generators of hyperbolic equations, J. Funct. Anal. 12, 401-414, 1973.

- C. Anné and N. Torki-Hamza in the graphs
R. Anné \& N. Torki-Hamza

The Gauß-Bonnet operator of an infinite graph ; Analysis and Mathematical Physics 5 (2), 137-159 (2015)

Theorem

Let \mathcal{T} be a χ-complete triangulation. Then

$$
T \text { is e.s.a } \Leftrightarrow \mathcal{L} \text { is e.s.a }
$$

This result is based on the

Theorem "Von Neumann"

Let T be a densely defined closed operator then TT^{*} and $\mathrm{T}^{*} \mathrm{~T}$ are self-adjoint.

Theorem

Let \mathcal{T} be a χ-complete triangulation. Then

$$
T \text { is e.s.a } \Leftrightarrow \mathcal{L} \text { is e.s.a }
$$

This result is based on the

Theorem "Von Neumann"

Let T be a densely defined closed operator then TT^{*} and $\mathrm{T}^{*} \mathrm{~T}$ are self-adjoint.

```
Theorem
Let }\mathcal{T}\mathrm{ be a }\chi\mathrm{ -complete triangulation then the operator }T\mathrm{ is essentially
self-adjoint on }\mp@subsup{\mathcal{C}}{c}{}(\mathcal{V})\oplus\mp@subsup{\mathcal{C}}{c}{}(\mathcal{E})\oplus\mp@subsup{\mathcal{C}}{c}{}(\mathcal{F})
Corollary
Let }\mathcal{T}\mathrm{ be a }\chi\mathrm{ -complete triangulation then }\mathcal{L}\mathrm{ is essentially self-adjoint on
\mathcal{C}
```


Theorem

Let \mathcal{T} be a χ-complete triangulation then operator T is essentially self-adjoint on $\mathcal{C}_{c}(\mathcal{V}) \oplus \mathcal{C}_{c}(\mathcal{E}) \oplus \mathcal{C}_{c}(\mathcal{F})$.

Corollary

Let \mathcal{T} be a χ-complete triangulation then \mathcal{L} is essentially self-adjoint on $\mathcal{C}_{c}(\mathcal{V}) \oplus \mathcal{C}_{c}(\mathcal{E}) \oplus \mathcal{C}_{c}(\mathcal{F})$.

To obtain this result we need
Theorem" C. Anné and N. Torki-Hamza"
Let \mathcal{K} be a χ-complet graph then $d^{0}+\delta^{0}$ is essentially self-adjoint on $\mathcal{C}_{c}(\mathcal{V}) \oplus \mathcal{C}_{c}(\mathcal{E})$.

Let \mathcal{T} be a χ-complete triangulation then $d^{1}+\delta^{1}$ is essentially self-adjoint on $\mathcal{C}_{c}(\mathcal{E}) \oplus \mathcal{C}_{c}(\mathcal{F})$.

To obtain this result we need

Theorem" C. Anné and N. Torki-Hamza"

Let \mathcal{K} be a χ-complet graph then $d^{0}+\delta^{0}$ is essentially self-adjoint on $\mathcal{C}_{c}(\mathcal{V}) \oplus \mathcal{C}_{c}(\mathcal{E})$.

Proposition

Let \mathcal{T} be a χ-complete triangulation then $d^{1}+\delta^{1}$ is essentially self-adjoint on $\mathcal{C}_{c}(\mathcal{E}) \oplus \mathcal{C}_{c}(\mathcal{F})$.

Lemma
Let \mathcal{T} be a χ-complete triangulation then

$$
\operatorname{Dom}(\bar{T})=\operatorname{Dom}\left(\overline{d^{0}}\right) \oplus\left(\operatorname{Dom}\left(\overline{\delta^{0}}\right) \cap \operatorname{Dom}\left(\overline{d^{1}}\right)\right) \oplus \operatorname{Dom}\left(\overline{\delta^{1}}\right) .
$$

To obtain this result we need

Theorem" C. Anné and N. Torki-Hamza"

Let \mathcal{K} be a χ-complet graph then $d^{0}+\delta^{0}$ is essentially self-adjoint on $\mathcal{C}_{c}(\mathcal{V}) \oplus \mathcal{C}_{c}(\mathcal{E})$.

Proposition

Let \mathcal{T} be a χ-complete triangulation then $d^{1}+\delta^{1}$ is essentially self-adjoint on $\mathcal{C}_{c}(\mathcal{E}) \oplus \mathcal{C}_{c}(\mathcal{F})$.

Lemma

Let \mathcal{T} be a χ-complete triangulation then

$$
\operatorname{Dom}(\bar{T})=\operatorname{Dom}\left(\overline{d^{0}}\right) \oplus\left(\operatorname{Dom}\left(\overline{\delta^{0}}\right) \cap \operatorname{Dom}\left(\overline{d^{1}}\right)\right) \oplus \operatorname{Dom}\left(\overline{\delta^{1}}\right) .
$$

Thanks

