Siegfried Beckus Technion - Israel Institute of Technology (joint work with Y. Pinchover)

Potsdam, 31th of July 2017

• study Schrödinger operator $H = -\Delta + V$ defined by

$$q(u,v) := \int_{\mathbb{R}^d} \nabla u \, \overline{\nabla v} + V \, u \, \overline{v} \, dx$$

• study Schrödinger operator $H = -\Delta + V$ defined by

$$q(u,v) := \int_{\mathbb{R}^d} \nabla u \, \overline{\nabla v} + V \, u \, \overline{v} \, dx$$

Theorem (Shnol 1957)

Let V be real-valued and bounded from below.

• study Schrödinger operator $H = -\Delta + V$ defined by

$$q(u,v) := \int_{\mathbb{R}^d} \nabla u \, \overline{\nabla v} + V \, u \, \overline{v} \, dx$$

Theorem (Shnol 1957)

Let V be real-valued and bounded from below. If Hu = Eu is a generalized eigenfunction for $E \in \mathbb{R}$ (i.e. $q(u, v) = E\langle u, v \rangle$)

• study Schrödinger operator $H = -\Delta + V$ defined by

$$q(u,v) := \int_{\mathbb{R}^d} \nabla u \,\overline{\nabla v} + V \, u \,\overline{v} \, dx$$

Theorem (Shnol 1957)

Let V be real-valued and bounded from below. If Hu = Eu is a generalized eigenfunction for $E \in \mathbb{R}$ (i.e. $q(u, v) = E\langle u, v \rangle$) and u is polynomially bounded,

• study Schrödinger operator $H = -\Delta + V$ defined by

$$q(u,v) := \int_{\mathbb{R}^d} \nabla u \,\overline{\nabla v} + V \, u \,\overline{v} \, dx$$

Theorem (Shnol 1957)

Let V be real-valued and bounded from below. If Hu = Eu is a generalized eigenfunction for $E \in \mathbb{R}$ (i.e. $q(u, v) = E\langle u, v \rangle$) and u is polynomially bounded, then $E \in \sigma(H)$.

• study Schrödinger operator $H = -\Delta + V$ defined by

$$q(u,v) := \int_{\mathbb{R}^d} \nabla u \, \overline{\nabla v} + V \, u \, \overline{v} \, dx$$

Theorem (Shnol 1957)

Let V be real-valued and bounded from below. If Hu = Eu is a generalized eigenfunction for $E \in \mathbb{R}$ (i.e. $q(u, v) = E\langle u, v \rangle$) and u is polynomially bounded, then $E \in \sigma(H)$.

generalized by Simon

• study Schrödinger operator $H = -\Delta + V$ defined by

$$q(u,v) := \int_{\mathbb{R}^d} \nabla u \, \overline{\nabla v} + V \, u \, \overline{v} \, dx$$

Theorem (Shnol 1957)

Let V be real-valued and bounded from below. If Hu = Eu is a generalized eigenfunction for $E \in \mathbb{R}$ (i.e. $q(u, v) = E\langle u, v \rangle$) and u is polynomially bounded, then $E \in \sigma(H)$.

generalized by Simon

Theorem (Simon 1981)

Theorem (Shnol 1957)

Let V be real-valued and bounded from below. If Hu = Eu is a generalized eigenfunction for $E \in \mathbb{R}$ and u is polynomially bounded, then $E \in \sigma(H)$.

Theorem (Simon 1981)

For H-spectrally almost every $E \in \mathbb{R}$, there exists a polynomially bounded eigenfunction.

 $\bullet\,$ remarkable generalizations for strongly local, regular Dirichlet forms $\to\,$ generalized eigenfunctions of subexponential growth

Theorem (Shnol 1957)

Let V be real-valued and bounded from below. If Hu = Eu is a generalized eigenfunction for $E \in \mathbb{R}$ and u is polynomially bounded, then $E \in \sigma(H)$.

Theorem (Simon 1981)

- remarkable generalizations for strongly local, regular Dirichlet forms
 → generalized eigenfunctions of subexponential growth
 - Boutet de Monvel, Stollmann 2003; Boutet de Monvel, Lenz, Stollmann 2009

Theorem (Shnol 1957)

Let V be real-valued and bounded from below. If Hu = Eu is a generalized eigenfunction for $E \in \mathbb{R}$ and u is polynomially bounded, then $E \in \sigma(H)$.

Theorem (Simon 1981)

- remarkable generalizations for strongly local, regular Dirichlet forms
 - \rightarrow generalized eigenfunctions of subexponential growth
 - Boutet de Monvel, Stollmann 2003; Boutet de Monvel, Lenz, Stollmann 2009
 - Kuchment 2005 (Quantum graphs)

Theorem (Shnol 1957)

Let V be real-valued and bounded from below. If Hu = Eu is a generalized eigenfunction for $E \in \mathbb{R}$ and u is polynomially bounded, then $E \in \sigma(H)$.

Theorem (Simon 1981)

- remarkable generalizations for strongly local, regular Dirichlet forms
 - \rightarrow generalized eigenfunctions of subexponential growth
 - Boutet de Monvel, Stollmann 2003; Boutet de Monvel, Lenz, Stollmann 2009
 - Kuchment 2005 (Quantum graphs)
 - ▶ Keller, Haeseler 2011 (graphs), Frank, Lenz, Wingert 2014 (non-local)

Theorem (Shnol 1957)

Let V be real-valued and bounded from below. If Hu = Eu is a generalized eigenfunction for $E \in \mathbb{R}$ and u is polynomially bounded, then $E \in \sigma(H)$.

Theorem (Simon 1981)

For H-spectrally almost every $E \in \mathbb{R}$, there exists a polynomially bounded eigenfunction.

- remarkable generalizations for strongly local, regular Dirichlet forms
 - \rightarrow generalized eigenfunctions of subexponential growth
 - Boutet de Monvel, Stollmann 2003; Boutet de Monvel, Lenz, Stollmann 2009
 - Kuchment 2005 (Quantum graphs)
 - ► Keller, Haeseler 2011 (graphs), Frank, Lenz, Wingert 2014 (non-local)

Question

Is it possible to replace the polynomial bound by an object intrinsically defined by H?

• $\Omega \subseteq \mathbb{R}^d$ with measure m

- $\Omega \subseteq \mathbb{R}^d$ with measure m
- $A: \Omega \to \mathbb{R}^{d^2}$ measurable symmetric matrix satisfying

 $\forall K \Subset \Omega, \exists \lambda_K > 1$ such that $\lambda_K^{-1}I \leq A \leq \lambda_K I$ on K

- $\Omega \subseteq \mathbb{R}^d$ with measure m
- $A: \Omega \to \mathbb{R}^{d^2}$ measurable symmetric matrix satisfying

 $\forall K \Subset \Omega, \exists \lambda_K > 1$ such that $\lambda_K^{-1}I \leq A \leq \lambda_K I$ on K

• $V \in L^p_{loc}(\Omega, \mathbb{R})$ for $p > \frac{d}{2}$

- $\Omega \subseteq \mathbb{R}^d$ with measure m
- $A: \Omega \to \mathbb{R}^{d^2}$ measurable symmetric matrix satisfying

 $\forall K \Subset \Omega, \exists \lambda_K > 1$ such that $\lambda_K^{-1} I \leq A \leq \lambda_K I$ on K

•
$$V \in L^p_{loc}(\Omega, \mathbb{R})$$
 for $p > \frac{d}{2}$

• Schrödinger-type operator H defined by $q(u, v) = \langle Hu, v \rangle$ where

$$q(u,v) := \int_{\Omega} \langle A \nabla u , \nabla v \rangle + V \, u \, \overline{v} \, dm$$

- $\Omega \subseteq \mathbb{R}^d$ with measure m
- $\mathcal{A}:\Omega
 ightarrow \mathbb{R}^{d^2}$ measurable symmetric matrix satisfying

 $\forall K \Subset \Omega, \ \exists \lambda_K > 1$ such that $\lambda_K^{-1} I \leq A \leq \lambda_K I$ on K

- $V \in L^p_{loc}(\Omega,\mathbb{R})$ for $p > rac{d}{2}$
- Schrödinger-type operator H defined by $q(u, v) = \langle Hu, v \rangle$ where

$$q(u,v) := \int_{\Omega} \langle A \nabla u, \nabla v \rangle + V \, u \, \overline{v} \, dm$$

H supercritical

 $H \not\geq 0$

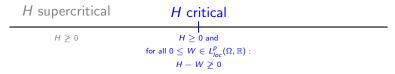
- $\Omega \subseteq \mathbb{R}^d$ with measure m
- $A: \Omega
 ightarrow \mathbb{R}^{d^2}$ measurable symmetric matrix satisfying

 $\forall K \Subset \Omega, \ \exists \lambda_K > 1 \quad \text{ such that } \quad \lambda_K^{-1} I \leq A \leq \lambda_K I \quad \text{ on } K$

• $V \in L^p_{loc}(\Omega,\mathbb{R})$ for $p > rac{d}{2}$

• Schrödinger-type operator H defined by $q(u, v) = \langle Hu, v \rangle$ where

$$q(u, v) := \int_{\Omega} \langle A \nabla u, \nabla v \rangle + V \, u \, \overline{v} \, dm$$



- $\Omega \subseteq \mathbb{R}^d$ with measure m
- $A: \Omega
 ightarrow \mathbb{R}^{d^2}$ measurable symmetric matrix satisfying

 $\forall K \Subset \Omega, \ \exists \lambda_K > 1 \quad \text{ such that } \quad \lambda_K^{-1}I \leq A \leq \lambda_K I \quad \text{ on } K$

• $V \in L^p_{loc}(\Omega, \mathbb{R})$ for $p > \frac{d}{2}$

• Schrödinger-type operator H defined by $q(u, v) = \langle Hu, v \rangle$ where

$$q(u, v) := \int_{\Omega} \langle A \nabla u, \nabla v \rangle + V \, u \, \overline{v} \, dm$$

H supercritical	H critical	H subcritical
H ≱ 0	$H \geq 0$ and for all $0 \leq W \in L^p_{loc}(\Omega,\mathbb{R})$:	$H \ge 0$ and H is not critical
	$H - W \geq 0$	

- $\Omega \subseteq \mathbb{R}^d$ with measure m
- $A: \Omega
 ightarrow \mathbb{R}^{d^2}$ measurable symmetric matrix satisfying

 $\forall K \Subset \Omega, \ \exists \lambda_K > 1 \quad \text{such that} \quad \lambda_K^{-1} I \leq A \leq \lambda_K I \quad \text{ on } K$

• $V \in L^p_{loc}(\Omega,\mathbb{R})$ for $p > rac{d}{2}$

• Schrödinger-type operator H defined by $q(u, v) = \langle Hu, v \rangle$ where

$$q(u,v) := \int_{\Omega} \langle A \nabla u, \nabla v \rangle + V \, u \, \overline{v} \, dm$$

H supercritical	H critical	H subcritical
Η ≱ 0	$ \begin{aligned} H &\geq 0 \text{ and} \\ \text{for all } 0 &\leq W \in L^p_{loc}(\Omega, \mathbb{R}) : \\ H - W &\geq 0 \end{aligned} $	$H \ge 0$ and H is not critical

Agmon, Murata, Pinchover, Pinsky, Simon and many more

- $\Omega \subseteq \mathbb{R}^d$ with measure m
- $A: \Omega \to \mathbb{R}^{d^2}$ measurable symmetric matrix satisfying

 $\forall K \Subset \Omega, \ \exists \lambda_K > 1 \quad \text{ such that } \quad \lambda_K^{-1}I \leq A \leq \lambda_K I \quad \text{ on } K$

• $V \in L^p_{loc}(\Omega,\mathbb{R})$ for $p > rac{d}{2}$

• Schrödinger-type operator H defined by $q(u, v) = \langle Hu, v \rangle$ where

$$q(u,v) := \int_{\Omega} \langle A \nabla u, \nabla v \rangle + V \, u \, \overline{v} \, dm$$

H supercritical	H critical	H subcritical
H ≱ 0	$H \ge 0 \text{ and}$ for all $0 \le W \in L^p_{loc}(\Omega, \mathbb{R}) :$ $H - W \ge 0$	$H \ge 0$ and H is not critical

- Agmon, Murata, Pinchover, Pinsky, Simon and many more
- *H* critical \Leftrightarrow *H* admits an (Agmon) ground state φ (harmonic & minimal growth at infinity)

Question

Is it possible to replace the polynomial bound by an object intrinsically defined by H?

Question

Is it possible to replace the polynomial bound by an object intrinsically defined by H?

Conjecture (Devyver, Fraas, Pinchover 2014)

Consider a general Schrödinger-type operator H on Ω being critical with (Agmon) ground state φ .

Question

Is it possible to replace the polynomial bound by an object intrinsically defined by H?

Conjecture (Devyver, Fraas, Pinchover 2014)

Question

Is it possible to replace the polynomial bound by an object intrinsically defined by H?

Conjecture (Devyver, Fraas, Pinchover 2014)

Question

Is it possible to replace the polynomial bound by an object intrinsically defined by H?

Theorem (B/Pinchover 2017)

Consider a general Schrödinger-type operator H on Ω being critical with (Agmon) ground state φ . If Hu = Eu is a generalized eigenfunction for $E \in \mathbb{R}$ and $|u| \leq \varphi$, then $E \in \sigma(H)$.

• conjectured by Devyver, Fraas, Pinchover 2014

Question

Is it possible to replace the polynomial bound by an object intrinsically defined by H?

Theorem (B/Pinchover 2017)

- conjectured by Devyver, Fraas, Pinchover 2014
- φ (Agmon) ground state $\Leftrightarrow \begin{array}{l} \forall B \Subset \Omega, \exists (\varphi_n) \subseteq \mathcal{C}_c^{\infty}(\Omega) & \text{such that} \\ \int_B \varphi_n^2 dm = 1 & \text{and} & \lim q(\varphi_n, \varphi_n) = 0 \end{array}$

Question

Is it possible to replace the polynomial bound by an object intrinsically defined by H?

Theorem (B/Pinchover 2017)

- conjectured by Devyver, Fraas, Pinchover 2014
- φ (Agmon) ground state $\Leftrightarrow \begin{array}{l} \forall B \Subset \Omega, \exists (\varphi_n) \subseteq \mathcal{C}_c^{\infty}(\Omega) & \text{such that} \\ \int_B \varphi_n^2 dm = 1 & \text{and} & \lim q(\varphi_n, \varphi_n) = 0 \end{array}$
- Weyl sequence $w_n := \frac{u \varphi_n}{\|u \varphi_n\|}$ for the form q and energy E

Question

Is it possible to replace the polynomial bound by an object intrinsically defined by H?

Theorem (B/Pinchover 2017)

- conjectured by Devyver, Fraas, Pinchover 2014
- φ (Agmon) ground state $\Leftrightarrow \begin{array}{l} \forall B \Subset \Omega, \exists (\varphi_n) \subseteq \mathcal{C}_c^{\infty}(\Omega) & \text{such that} \\ \int_B \varphi_n^2 dm = 1 & \text{and} & \lim q(\varphi_n, \varphi_n) = 0 \end{array}$
- Weyl sequence $w_n := \frac{u \varphi_n}{\|u \varphi_n\|}$ for the form q and energy E
- Cacciopolli type estimate \rightarrow control mixed terms

Question

Is it possible to replace the polynomial bound by an object intrinsically defined by H?

Theorem (B/Pinchover 2017)

- conjectured by Devyver, Fraas, Pinchover 2014
- φ (Agmon) ground state $\Leftrightarrow \begin{array}{l} \forall B \Subset \Omega, \exists (\varphi_n) \subseteq \mathcal{C}_c^{\infty}(\Omega) & \text{such that} \\ \int_B \varphi_n^2 dm = 1 & \text{and} & \lim q(\varphi_n, \varphi_n) = 0 \end{array}$
- Weyl sequence $w_n := \frac{u \varphi_n}{\|u \varphi_n\|}$ for the form q and energy E
- Cacciopolli type estimate \rightarrow control mixed terms