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A short historical review

study Schrödinger operator H = −∆ + V defined by

q(u, v) :=

∫
Rd

∇u∇v + V u v dx

Theorem (Shnol 1957)

Let V be real-valued and bounded from below. If Hu = Eu is a generalized
eigenfunction for E ∈ R (i.e. q(u, v) = E 〈u, v〉) and u is polynomially
bounded, then E ∈ σ(H).

generalized by Simon

Theorem (Simon 1981)

For H-spectrally almost every E ∈ R, there exists a polynomially bounded
eigenfunction.
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A short historical review

Theorem (Shnol 1957)

Let V be real-valued and bounded from below. If Hu = Eu is a generalized
eigenfunction for E ∈ R and u is polynomially bounded, then E ∈ σ(H).

Theorem (Simon 1981)

For H-spectrally almost every E ∈ R, there exists a polynomially bounded
eigenfunction.

remarkable generalizations for strongly local, regular Dirichlet forms
→ generalized eigenfunctions of subexponential growth

I Boutet de Monvel, Stollmann 2003; Boutet de Monvel, Lenz,
Stollmann 2009

I Kuchment 2005 (Quantum graphs)
I Keller, Haeseler 2011 (graphs), Frank, Lenz, Wingert 2014 (non-local)

Question

Is it possible to replace the polynomial bound by an object intrinsically
defined by H?
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Ground state and critical theory

Ω ⊆ Rd with measure m

A : Ω→ Rd2
measurable symmetric matrix satisfying

∀K b Ω, ∃λK > 1 such that λ−1
K I ≤ A ≤ λK I on K

V ∈ Lp
loc(Ω,R) for p > d

2

Schrödinger-type operator H defined by q(u, v) = 〈Hu, v〉 where

q(u, v) :=

∫
Ω
〈A∇u ,∇v〉+ V u v dm

Agmon, Murata, Pinchover, Pinsky, Simon and many more

H critical ⇔ H admits an (Agmon) ground state ϕ
(harmonic & minimal growth at infinity)
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Shnol theorem for the Agmon ground state

Question

Is it possible to replace the polynomial bound by an object intrinsically
defined by H?

conjectured by Devyver, Fraas, Pinchover 2014

ϕ (Agmon) ground state ⇔
∀B b Ω, ∃(ϕn) ⊆ C∞c (Ω) such that∫
B ϕ

2
ndm = 1 and lim q(ϕn, ϕn) = 0

Weyl sequence wn := u ϕn

‖u ϕn‖ for the form q and energy E

Cacciopolli type estimate → control mixed terms
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