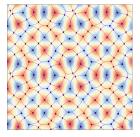
Nodal domains

Spectral position of $f|_{S}$

Numerical experimen

Summary

Neumann Domains and Spectral Position



Ram Band Technion, Israel

based on joint works with Sebastian Egger (Technion) David Fajman (Vienna) Alexander Taylor (Bristol)

Analysis and Geometry on Graphs and Manifolds, Potsdam, August 2017

Outline

Nodal domains

Neumann domains

Spectral position of $|f|_{\Omega}$

Numerical experiments

Summary

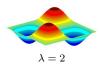
Nodal domains : Definitions

(M,g)2d compact, connected Riemannian manifold (w
\o boundary).

 $\begin{aligned} -\Delta_g f_n &= \lambda_n f_n & \text{with Dirichlet B.C.} \quad f_n|_{\partial M} = 0 \\ \text{or Neumann B.C.} \quad \hat{n} \cdot \nabla f_n|_{\partial M} = 0 \end{aligned}$

Spectrum discrete and arranged non-decreasingly, $\lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots \nearrow \infty$. Orthonormal basis of eigenfunctions, $\{f_n\}_{n=1}^{\infty}$.

<u>Example</u>: M is flat torus with side length= 2π



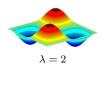
Nodal domains : Definitions

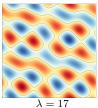
(M,g)2d compact, connected Riemannian manifold (w
\o boundary).

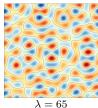
 $-\Delta_g f_n = \lambda_n f_n \qquad \text{with Dirichlet B.C.} \quad f_n|_{\partial M} = 0 \\ \text{or Neumann B.C.} \quad \hat{n} \cdot \nabla f_n|_{\partial M} = 0$

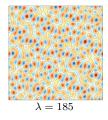
Spectrum discrete and arranged non-decreasingly, $\lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots \nearrow \infty$. Orthonormal basis of eigenfunctions, $\{f_n\}_{n=1}^{\infty}$.

<u>Example</u>: M is flat torus with side length= 2π









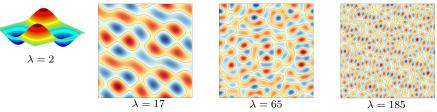
Nodal domains : Definitions

(M,g)2d compact, connected Riemannian manifold (w
\o boundary).

 $\begin{aligned} -\Delta_g f_n &= \lambda_n f_n & \text{with Dirichlet B.C.} \quad f_n|_{\partial M} = 0 \\ \text{or Neumann B.C.} \quad \hat{n} \cdot \nabla f_n|_{\partial M} = 0 \end{aligned}$

Spectrum discrete and arranged non-decreasingly, $\lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots \nearrow \infty$. Orthonormal basis of eigenfunctions, $\{f_n\}_{n=1}^{\infty}$.

<u>Example</u>: M is flat torus with side length= 2π



Nodal set of f_n is $\mathcal{Z}(f_n) := \{ x \in M \mid f_n(x) = 0 \}.$

Nodal domains of f_n are the connected components of $M \setminus \mathcal{Z}(f_n)$. $\nu_n := \#$ of nodal domains of f_n .

Number of nodal domains of f_n is bounded by n, $\nu_n \leq n$

Number of nodal domains of f_n is bounded by n, $\nu_n \leq n$

Conclude

• $\nu_1 = 1$

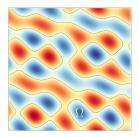
• $\nu_n = 1 \implies n = 1$ (as all eigenfunctions are orthogonal to f_1)

Number of nodal domains of f_n is bounded by n, $\nu_n \leq n$

Conclude

• $\nu_1 = 1$

• $\nu_n = 1 \implies n = 1$ (as all eigenfunctions are orthogonal to f_1)



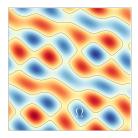
Let f be an eigenfunction on M of eigenvalue λ . Let Ω be a single nodal domain of f. $f|_{\Omega}$ is a Dirichlet eigenfunction of Ω .

Number of nodal domains of f_n is bounded by n, $\nu_n \leq n$

Conclude

• $\nu_1 = 1$

• $\nu_n = 1 \implies n = 1$ (as all eigenfunctions are orthogonal to f_1)



Let f be an eigenfunction on M of eigenvalue λ . Let Ω be a single nodal domain of f. $f|_{\Omega}$ is a Dirichlet eigenfunction of Ω .

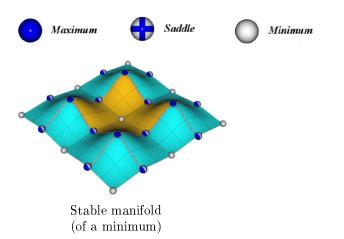
 $f|_{\Omega}$ has a single nodal domain

 $\Rightarrow \quad f|_{\Omega} \text{ is the } 1^{\text{st}} \text{ eigenfunction of } \Omega \text{ (groundstate)}$ $\Rightarrow \quad \lambda_1(\Omega) = \lambda.$

Nodal domains - regions below\above sea level.

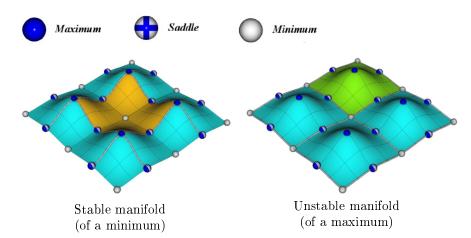
Nodal domains - regions below\above sea level.

Neumann domains - where would a water droplet role to?



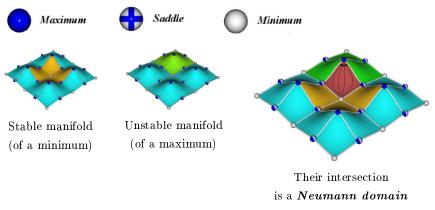
 $Nodal \ domains$ - regions below\above sea level.

Neumann domains - where would a water droplet role to?



Nodal domains - regions below \above sea level

Neumann domains - where would a water droplet role to?



Figures by Attila Gabor Gyulassy.

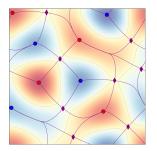
(M,g) 2d compact, connected Riemannian manifold (w\o boundary).

 $-\Delta_g f_n = \lambda_n f_n$ possibly with Dirichlet or Neumann boundary.

Define flow along integral curves of ∇f_n , $\varphi : \mathbb{R} \times M \to M$,

$$\partial_t \varphi(t,\,x) = -\nabla f_n \big|_{\varphi(t,\,x)} \ , \ \varphi(0,\,x) = x.$$

Assumption - f_n is a Morse function (generic by Uhlenbeck '76)



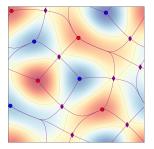
(M,g) 2d compact, connected Riemannian manifold (w\o boundary).

 $-\Delta_g f_n = \lambda_n f_n$ possibly with Dirichlet or Neumann boundary.

Define flow along integral curves of ∇f_n , $\varphi : \mathbb{R} \times M \to M$,

$$\partial_t \varphi(t,\,x) = -\nabla f_n \big|_{\varphi(t,\,x)} \ , \ \varphi(0,\,x) = x.$$

Assumption - f_n is a Morse function (generic by Uhlenbeck '76)



Lemma (Basic Morse theory)

 $\forall x \in M \text{ both limits } \lim_{t \to \pm \infty} \varphi(t; x)$ exist and

$$\lim_{t \to \pm \infty} \varphi\left(t; x\right) \in \mathcal{C}r\left(f\right)$$

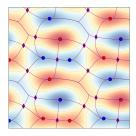
 $Cr(f) := \{x \in M \mid \nabla f|_x = 0\}$ $Sd(f) := \{r \in M \mid r \text{ is a saddle point of } f\}$ $\mathcal{M}in(f) := \{p \in M \mid p \text{ is a minimum of } f\}$ $\mathcal{M}ax(f) := \{q \in M \mid q \text{ is a maximum of } f\}$

Definition (Stable and unstable manifolds)

For a critical point $x \in Cr(f)$

$$W^{s}(x) := \{ y \in M \mid \lim_{t \to \infty} \varphi(t, y) = x \}$$

$$W^{u}(x) := \{ y \in M \mid \lim_{t \to -\infty} \varphi(t, y) = x \}$$

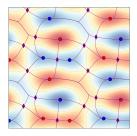


Definition (Stable and unstable manifolds)

For a critical point $x \in Cr(f)$

$$W^{s}(x) := \{ y \in M \mid \lim_{t \to \infty} \varphi(t, y) = x \}$$

$$W^{u}(x) := \{ y \in M \mid \lim_{t \to -\infty} \varphi(t, y) = x \}$$



Definitions (Neumann domain and Neumann lines)

A **Neumann domain** is a connected component of $W^{s}(p) \cap W^{u}(q)$, where $p \in \mathcal{M}in(f)$, $q \in \mathcal{M}ax(f)$.

The set of **Neumann lines** is $\mathcal{N}(f) := \overline{\bigcup_{r \in Sd(f)} W^s(r) \cup W^u(r)}.$

Their union forms a cover of the whole manifold.

Rephrasing similar definitions from [Zelditch '13, McDonald, Fulling '14].

Neumann domains : Spectral position

Why **Neumann** domains?

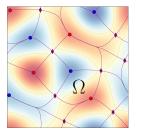
Let $\gamma \subset \{\varphi(t; x)\}$ be part of a gradient flow line.

Then f 's normal derivative at γ vanishes, $\left. \left. \hat{n}_{\gamma} \cdot \nabla f \right|_{\gamma} = 0$

Spectral position of $f|_{\Omega}$

Neumann domains : Spectral position

Why **Neumann** domains? Let $\gamma \subset \{\varphi(t; x)\}$ be part of a gradient flow line. Then f's normal derivative at γ vanishes, $\hat{n}_{\gamma} \cdot \nabla f|_{\gamma} = 0$



Let f be an eigenfunction of eigenvalue λ . Let Ω be a single Neumann domain of f. $\Rightarrow \quad f|_{\Omega}$ is an eigenfunction of Ω with Neumann boundary conditions.

What is the position of $f|_{\Omega}$ in the Neumann spectrum of Ω ? i.e., what is k in $\lambda_k(\Omega) = \lambda$?

Compare with similar question for a 'usual' (Dirichlet) nodal domain.

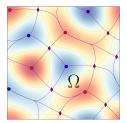
Spectral position of $f|_{\Omega}$

Summary

Neumann domains : basic properties

Theorem (B., Fajman '16)

- 1. $\overline{\Omega} \cap \mathcal{C}r(f) \subset \partial \Omega$
- 2. $\overline{\Omega} \cap (\mathcal{M}in(f) \cup \mathcal{M}ax(f)) = \{p,q\}$
- 3. Ω is simply connected.
- 4. $\overline{\Omega} \cap f^{-1}(0)$ is a single non self-intersecting curve whose endpoints lie on $\partial\Omega$.



The above shows that the "topography" of $f|_{\Omega}$ is relatively simple.

So...for a Neumann domain Ω what is the position of $f|_{\Omega}$ in the spectrum of Ω ?

Position of $f|_{\Omega}$ in Ω 's Neumann spectrum

Let M be a 2d manifold and f an eigenfunction.

 $\operatorname{Pos}(f|_{\Omega}) := k \quad \Leftrightarrow \quad f|_{\Omega} \quad \text{is the } k^{\operatorname{th}} \quad \text{eigenfunction of } \Omega$

The 0th eigenfunction is the constant function. Notation:

Position of $\left.f\right|_{\Omega}$ in Ω 's Neumann spectrum

Let M be a 2d manifold and f an eigenfunction.

 $\operatorname{Pos}\left(\left.f\right|_{\Omega}\right):=k \ \ \Leftrightarrow \ \ f|_{\Omega} \ \ \text{is the } k^{\operatorname{th}} \ \text{eigenfunction of } \Omega$

Notation: The 0th eigenfunction is the constant function.

Fix M.

If $\forall f \ \forall \Omega$, Pos $(f|_{\Omega}) = 1$ (so that $\lambda_1(\Omega) = \lambda$) we can use the isoperimetric inequality $A(\Omega) \lambda_1(\Omega) \leq \pi \lambda_1(\mathbb{D})$, where $A(\Omega) :=$ Area of Ω and \mathbb{D} is the unit disk [Szegö-Weinberger ('54-6)]. This gives estimates on the number of Neumann domains.

Position of $\left.f\right|_{\Omega}$ in Ω 's Neumann spectrum

Let M be a 2d manifold and f an eigenfunction.

 $\operatorname{Pos}\left(\left.f\right|_{\Omega}\right):=k \hspace{0.1in} \Leftrightarrow \hspace{0.1in} f|_{\Omega} \hspace{0.1in} \text{is the } k^{\operatorname{th}} \hspace{0.1in} \text{eigenfunction of } \Omega$

<u>Notation</u>: The 0^{th} eigenfunction is the constant function.

Fix M.

If $\forall f \ \forall \Omega$, Pos $(f|_{\Omega}) = 1$ (so that $\lambda_1(\Omega) = \lambda$) we can use the isoperimetric inequality $A(\Omega) \lambda_1(\Omega) \leq \pi \lambda_1(\mathbb{D})$, where $A(\Omega) :=$ Area of Ω and \mathbb{D} is the unit disk [Szegö-Weinberger ('54-6)]. This gives estimates on the number of Neumann domains.

Alternatively, If $\operatorname{Pos}(f|_{\Omega}) = 2$ then use $A(M)\lambda_2(M) \le 2\pi\lambda_1(\mathbb{D})$ [Girouard, Nadirashvili, Polterovich '09] or if, $\operatorname{Pos}(f|_{\Omega}) = m$ then use $A(M)\lambda_m(M) \le 8\pi m$ [Kröger '92].

All the above is applicable if $\exists m \text{ such that } \forall f \forall \Omega \quad \operatorname{Pos}(f|_{\Omega}) \leq m$

Position of $\left.f\right|_{\Omega}$ in Ω 's Neumann spectrum

Let M be a 2d manifold and f an eigenfunction.

 $\operatorname{Pos}\left(\left.f\right|_{\Omega}\right):=k \hspace{0.1in} \Leftrightarrow \hspace{0.1in} f|_{\Omega} \hspace{0.1in} \text{is the } k^{\operatorname{th}} \hspace{0.1in} \text{eigenfunction of } \Omega$

Notation: The 0th eigenfunction is the constant function.

Fix M.

If $\forall f \ \forall \Omega$, Pos $(f|_{\Omega}) = 1$ (so that $\lambda_1(\Omega) = \lambda$) we can use the isoperimetric inequality $A(\Omega) \lambda_1(\Omega) \leq \pi \lambda_1(\mathbb{D})$, where $A(\Omega) :=$ Area of Ω and \mathbb{D} is the unit disk [Szegö-Weinberger ('54-6)]. This gives estimates on the number of Neumann domains.

Alternatively, If $\operatorname{Pos}(f|_{\Omega}) = 2$ then use $A(M)\lambda_2(M) \le 2\pi\lambda_1(\mathbb{D})$ [Girouard, Nadirashvili, Polterovich '09] or if, $\operatorname{Pos}(f|_{\Omega}) = m$ then use $A(M)\lambda_m(M) \le 8\pi m$ [Kröger '92].

All the above is applicable if $\exists m \text{ such that } \forall f \forall \Omega \quad \operatorname{Pos}(f|_{\Omega}) \leq m$

<u>Proposition [B., Fajman '16]</u>: For the 2*d* flat torus, $\{ Pos(f|_{\Omega}) \}_{f,\Omega}$ is not bounded. $\operatorname{Pos}\left(f|_{\Omega}\right)$ on the torus

Proposition (B., Fajman '16)

For the 2d flat torus, $\left\{ Pos\left(f|_{\Omega} \right) \right\}_{f,\Omega}$ is not bounded.

Proof.

Let $\mathbb{T} = [0, 1] \times [0, 1]$ be the unit flat torus. Assume by contradiction $\forall f \ \forall \Omega \ \text{Pos} \left(f |_{\Omega} \right) \leq m$. Fix some f with eigenvalue λ .

$$\forall \Omega \quad A(\Omega) \lambda_m(\Omega) \le 8\pi m \quad \Rightarrow \quad A(\Omega) \lambda \le 8\pi m$$

Summing over all Ω of f (denote by μ their number):

$$A(\mathbb{T})\lambda \le 8\pi m \cdot \mu \quad \Rightarrow \quad \mu \ge \frac{1}{8\pi m}\lambda \tag{1}$$

 $\operatorname{Pos}\left(f|_{\Omega} \right)$ on the torus

Proposition (B., Fajman '16)

For the 2d flat torus, $\{ Pos(f|_{\Omega}) \}_{f,\Omega}$ is not bounded.

Proof.

Let $\mathbb{T} = [0, 1] \times [0, 1]$ be the unit flat torus. Assume by contradiction $\forall f \ \forall \Omega \ \text{Pos} \left(f|_{\Omega} \right) \leq m$. Fix some f with eigenvalue λ .

$$\forall \Omega \quad A(\Omega) \lambda_m(\Omega) \le 8\pi m \quad \Rightarrow \quad A(\Omega) \lambda \le 8\pi m$$

Summing over all Ω of f (denote by μ their number):

$$A(\mathbb{T})\lambda \le 8\pi m \cdot \mu \quad \Rightarrow \quad \mu \ge \frac{1}{8\pi m}\lambda \tag{1}$$

Set
$$f(x, y) = \cos(2\pi n_x x) \cos(2\pi n_y y)$$

 $\lambda = 4\pi^2 \left(n_x^2 + n_y^2\right), \quad \mu = 8n_x n_y.$
Choosing $n_x = 1, n_y \gg 1$ contradicts (1)

 $\operatorname{Pos}\left(\left.f\right|_{\Omega}\right)$ on the torus

Proposition (B., Fajman '16)

For the 2d flat torus, $\{ Pos(f|_{\Omega}) \}_{f,\Omega}$ is not bounded.

Proof.

Let $\mathbb{T} = [0, 1] \times [0, 1]$ be the unit flat torus. Assume by contradiction $\forall f \ \forall \Omega \ \text{Pos} \left(f |_{\Omega} \right) \leq m$. Fix some f with eigenvalue λ .

$$\forall \Omega \quad A(\Omega) \lambda_m(\Omega) \le 8\pi m \quad \Rightarrow \quad A(\Omega) \lambda \le 8\pi m$$

Summing over all Ω of f (denote by μ their number):

$$A(\mathbb{T})\lambda \le 8\pi m \cdot \mu \quad \Rightarrow \quad \mu \ge \frac{1}{8\pi m}\lambda \tag{1}$$

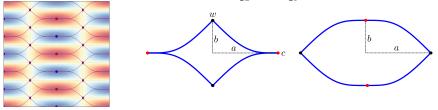
Set
$$f(x, y) = \cos(2\pi n_x x) \cos(2\pi n_y y)$$

 $\lambda = 4\pi^2 \left(n_x^2 + n_y^2\right), \quad \mu = 8n_x n_y.$
Choosing $n_x = 1, n_y \gg 1$ contradicts (1)

<u>Remark</u>: The above also shows that bounded $\operatorname{Pos}(f|_{\Omega})$ implies $\mu_n \to \infty$. This holds even if $\operatorname{Pos}(f|_{\Omega})$ is bounded for a positive proportion of Ω 's.

A tale of two Neumann domains

Back to the integrable function: $f(x, y) = \cos\left(\frac{\pi}{2a}x\right)\cos\left(\frac{\pi}{2b}y\right)$

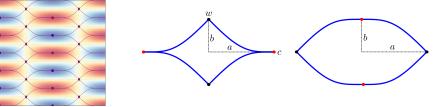


We saw $\operatorname{Pos}\left(f|_{\Omega}\right) \xrightarrow[b \to 0]{} \infty$.

For which of the domains above the position is unbounded?

A tale of two Neumann domains

Back to the integrable function: $f(x, y) = \cos\left(\frac{\pi}{2a}x\right)\cos\left(\frac{\pi}{2b}y\right)$



We saw $\operatorname{Pos}\left(f|_{\Omega}\right) \xrightarrow[b \to 0]{} \infty$.

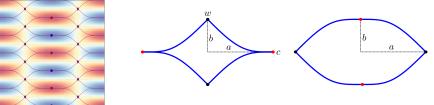
For which of the domains above the position is unbounded?

It is the lens-like domain $\Omega_{\rm lens} =$

What about the star-like domain, Ω_{star} ?

A tale of two Neumann domains

Back to the integrable function: $f(x,y) = \cos\left(\frac{\pi}{2a}x\right)\cos\left(\frac{\pi}{2b}y\right)$



```
We saw \operatorname{Pos}\left(f|_{\Omega}\right) \xrightarrow{} \infty.
```

For which of the domains above the position is unbounded?

It is the lens-like domain $\Omega_{\text{lens}} =$

What about the star-like domain, Ω_{star} ?

Theorem (B., Egger, Taylor)

 $\forall a, \exists b_a, such that \forall b < b_a,$ the eigenfunction $f(x,y) = \cos\left(\frac{\pi}{2a}x\right)\cos\left(\frac{\pi}{2b}y\right)$ satisfies $Pos(f|_{\Omega_{eff}}) = 1$.

<u>Define</u> the area-to-perimeter ratio of a Neumann domain Ω of eigenfunction f with eigenvalue λ (following Elon, Gnutzmann, Joas, Smilansky '07)

$$\rho(\Omega) := \frac{A(\Omega)\sqrt{\lambda}}{L(\Omega)},$$

with $A(\Omega) :=$ Area and $L(\Omega) :=$ Perimeter length.

<u>Define</u> the area-to-perimeter ratio of a Neumann domain Ω of eigenfunction f with eigenvalue λ (following Elon, Gnutzmann, Joas, Smilansky '07)

$$\rho(\Omega) := \frac{A(\Omega)\sqrt{\lambda}}{L(\Omega)},$$

with $A(\Omega) :=$ Area and $L(\Omega) :=$ Perimeter length.

Assume $\operatorname{Pos}(f|_{\Omega}) = 1$ (so that $\lambda = \lambda_1(\Omega)$)

• Szegö-Weinberger $A(\Omega) \lambda_1(\Omega) \leq \pi \lambda_1(\mathbb{D}) \Leftrightarrow \sqrt{A(\Omega) \lambda} \leq \sqrt{\pi p^2}$, with $p \approx 1.8412$, (as the disk \mathbb{D} as maximizer).

<u>Define</u> the area-to-perimeter ratio of a Neumann domain Ω of eigenfunction f with eigenvalue λ (following Elon, Gnutzmann, Joas, Smilansky '07)

$$\rho(\Omega) := \frac{A(\Omega)\sqrt{\lambda}}{L(\Omega)},$$

with $A(\Omega) :=$ Area and $L(\Omega) :=$ Perimeter length.

Assume $\operatorname{Pos}(f|_{\Omega}) = 1$ (so that $\lambda = \lambda_1(\Omega)$)

- Szegö-Weinberger $A(\Omega) \lambda_1(\Omega) \leq \pi \lambda_1(\mathbb{D}) \Leftrightarrow \sqrt{A(\Omega) \lambda} \leq \sqrt{\pi p^2}$, with $p \approx 1.8412$, (as the disk \mathbb{D} as maximizer).
- Geometric isoperimetric inequality (with disk as maximizer)

$$\frac{\sqrt{A\left(\Omega\right)}}{L\left(\Omega\right)} \le \frac{\sqrt{\pi}}{2\pi} = \frac{1}{2\sqrt{\pi}}$$

<u>Define</u> the area-to-perimeter ratio of a Neumann domain Ω of eigenfunction f with eigenvalue λ (following Elon, Gnutzmann, Joas, Smilansky '07)

$$\rho(\Omega) := \frac{A(\Omega)\sqrt{\lambda}}{L(\Omega)},$$

with $A(\Omega) :=$ Area and $L(\Omega) :=$ Perimeter length.

Assume $\operatorname{Pos}(f|_{\Omega}) = 1$ (so that $\lambda = \lambda_1(\Omega)$)

- Szegö-Weinberger $A(\Omega) \lambda_1(\Omega) \leq \pi \lambda_1(\mathbb{D}) \Leftrightarrow \sqrt{A(\Omega) \lambda} \leq \sqrt{\pi p^2}$, with $p \approx 1.8412$, (as the disk \mathbb{D} as maximizer).
- Geometric isoperimetric inequality (with disk as maximizer)

$$\frac{\sqrt{A\left(\Omega\right)}}{L\left(\Omega\right)} \le \frac{\sqrt{\pi}}{2\pi} = \frac{1}{2\sqrt{\pi}}$$

Combining both gives

$$\rho\left(\Omega\right) = \frac{A\left(\Omega\right)\sqrt{\lambda}}{L\left(\Omega\right)} \le \frac{p}{2} \approx 0.9206.$$

The area-to-perimeter ratio of a Neumann domain Ω

$$\rho\left(\Omega\right) := \quad \frac{A(\Omega)\sqrt{\lambda}}{L(\Omega)},$$

with $A(\Omega) :=$ Area and $L(\Omega) :=$ Perimeter length.

The assumption $\operatorname{Pos}(f|_{\Omega}) = 1$ yields $\rho(\Omega) \leq \frac{p}{2} \approx 0.9206$.

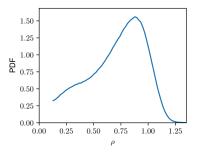
The area-to-perimeter ratio of a Neumann domain Ω

$$\rho\left(\Omega\right) := \frac{A(\Omega)\sqrt{\lambda}}{L(\Omega)},$$

with $A(\Omega) :=$ Area and $L(\Omega) :=$ Perimeter length.

The assumption $\operatorname{Pos}(f|_{\Omega}) = 1$ yields $\rho(\Omega) \leq \frac{p}{2} \approx 0.9206$.

<u>Numerical</u> distribution of $\rho(\Omega)$ calculated for random eigenfunctions on the flat torus of eigenvalue=925 (mutiplicity=24) (by Alexander Taylor)



Summary and Questions

Summary

An example with

- 1. Unobounded $\{ \operatorname{Pos} (f|_{\Omega}) \}_{f,\Omega}$
- 2. But $\operatorname{Pos}\left(\left.f\right|_{\Omega}\right) = 1$ for "half" of the Neumann domains.

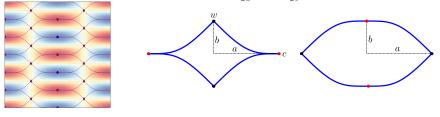
Random eigenfunctions on the torus have $Pos(f|_{\Omega}) > 1$ for a positive proportion of the Neumann domains.

Questions

- 1. Is $\{ \operatorname{Pos}(f|_{\Omega}) \}$ generically bounded?
- 2. How is it distributed?
- 3. Conjecture: For all f, there is a positive proportion of Neumann domains with $Pos(f|_{\Omega}) = 1$.
- 4. Using $Pos(f|_{\Omega})$ for estimates on the Neumann domain count.

After the coffee break...

Back to the integrable function: $f(x, y) = \cos\left(\frac{\pi}{2a}x\right)\cos\left(\frac{\pi}{2b}y\right)$



We saw $\operatorname{Pos}\left(f|_{\Omega}\right) \xrightarrow[b \to 0]{} \infty$.

The position is unbounded for the lens-like domain $\Omega_{\text{lens}} =$ Whereas, for the star-like domain, Ω_{star} we have

Theorem (B., Egger, Taylor)

 $\begin{aligned} \forall a, \; \exists b_a, \; such \; that \; \forall b < b_a, \\ the \; eigenfunction \; f(x,y) &= \cos\left(\frac{\pi}{2a}x\right)\cos\left(\frac{\pi}{2b}y\right) \; satisfies \; Pos(\; f|_{\Omega_{star}}) = 1. \end{aligned}$

To be proven by Sebastian Egger after the coffee break.

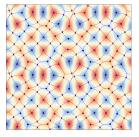
Nodal domains

Spectral position of $f|_{g}$

Numerical experimen

Summary

Neumann Domains and Spectral Position



Ram Band Technion, Israel

based on joint works with Sebastian Egger (Technion) David Fajman (Vienna) Alexander Taylor (Bristol)

Analysis and Geometry on Graphs and Manifolds, Potsdam, August 2017