Non self-adjoint Laplacians on a directed graph

Marwa BALTI

Carthage University (FSB) & Nantes University (LMJL)

31 July 2017:

International Conference at the University of Potsdam, Germany

We consider a non self-adjoint Laplacian on a directed graph with non symmetric edge weights. We analyse spectral properties of this Laplacian under a Kirchhoff's assumption. Moreover we establish isoperimetric inequalities in terms of the numerical range to show the absence of the essential spectrum of our Laplacian.

📡 T. Kato

Perturbation theory for linear operators, (1976).

📕 A. Grigor'yan

Analysis on graphs. Lecture Notes, (2011/2012).

W. D. Evans, R. T. Lewis and A. Zettl Non self-adjoint operators and their essential spectra, (1983) ...

Graphs and operators

- Functional spaces
- Non self-adjoint Laplacians
- Assumption (β) and overview on Laplacians
- Numerical range and applications

2 Cheeger inequality

3 Absence of essential spectrum by Cheeger Theorem

Graphs and operators

Cheeger inequality Absence of essential spectrum by Cheeger Theorem

Graphs and operators

- Functional spaces
- Non self-adjoint Laplacians
- Assumption (β) and overview on Laplacians
- Numerical range and applications

Functional spaces Non self-adjoint Laplacians Assumption (β) and overview on Laplacians Numerical range and applications

Notion of graphs

We call oriented or directed graph, the couple $G = (V, \vec{E})$, where V is a countable set of vertices, and $\vec{E} \subset V \times V$ is a set of directed edges. For two vertices x, y of V, we denote by (x, y) the edge that connects x to y, we also say that x and y are *neighbors*. For all $x \in V$, we set:

• The edge
$$(x, x)$$
 is called a loop.
• $V_x^+ = \left\{ y \in V, \ (x, y) \in \vec{E} \right\}$
• $V_x^- = \left\{ y \in V, \ (y, x) \in \vec{E} \right\}$
• $V_x = V_x^+ \cup V_x^-$. *G* is locally finite if for all $x \in V$,
 $\#V_x < \infty$.

Functional spaces Non self-adjoint Laplacians Assumption (β) and overview on Laplacians Numerical range and applications

Example of a directed graph

Transport network

A path between two vertices x and y in V is a finite set of directed edges (x_1, y_1) ; (x_2, y_2) ; ..; (x_n, y_n) , $n \ge 2$ such that

$$x_1 = x, y_n = y$$
 and $x_i = y_{i-1} \quad \forall \ 2 \le i \le n$.

- $G = (V, \vec{E})$ is called connected if two vertices are always related by a path.
- $G = (V, \vec{E})$ is called strongly connected if for all vertices x, y there is a path from x to y and one from y to x.

Functional spaces Non self-adjoint Laplacians Assumption (β) and overview on Laplacians Numerical range and applications

In this work, we suppose that G is without loops, locally finite, connected and satisfy:

$$orall x \in V, \ \#V_x^+
eq 0$$
 et $\#V_x^-
eq 0.$

We define a weighted graph

Definition

Weighted graph: A directed weighted graph is a triple (G, m, b), where G is a directed graph, $m : V \to \mathbb{R}^*_+$ is a weight on V and $b : V \times V \to [0, \infty)$ is a weight satisfying the following conditions:

•
$$b(x,x) = 0$$
 for all $x \in V$

•
$$b(x,y) > 0$$
 iff $(x,y) \in \vec{E}$

The graph (G, m, b) is called *symmetric* if for all $x, y \in V$,

$$b(x,y)=b(y,x).$$

Functional spaces Non self-adjoint Laplacians Assumption (β) and overview on Laplacians Numerical range and applications

•
$$\mathcal{C}(V) = \{f : V \to \mathbb{C}\}$$

- $C_c(V)$ is its subset of finite supported functions.
- The Hilbert space

$$\ell^2(V,m) = \{f \in \mathcal{C}(V), \quad \sum_{x \in V} m(x)|f(x)|^2 < \infty\}$$

endowed with the following inner product:

$$(f,g)_m = \sum_{x \in V} m(x)f(x)\overline{g(x)}.$$

Laplacian and Dichlet Laplacian:

For a weighted connected directed graph (V, \vec{E}, b) , we introduce the combinatorial Laplacians:

• We define the Laplacian Δ on $\mathcal{C}_c(V)$ by:

$$\Delta f(x) = \frac{1}{m(x)} \sum_{y \in V_x^+} b(x, y) \big(f(x) - f(y) \big).$$

• The Dirichlet Laplacian Δ_U^D , where U is a subset of V, is defined for $f \in C_c(U)$ and $g : V \to \mathbb{C}$ the extension of f to V by setting f = 0 outside U by:

$$\Delta^D_U(f) = \Delta(g)|_U.$$

Functional spaces Non self-adjoint Laplacians Assumption (β) and overview on Laplacians Numerical range and applications

Adjoint of operator A with domain D(A)

Proposition

A formal adjoint of Δ is the operator Δ' defined on $C_c(V)$ by:

$$\Delta' f(x) = \frac{1}{m(x)} \left(\sum_{y \in V} b(x, y) f(x) - \sum_{y \in V} b(y, x) f(y) \right).$$

The operator Δ' can be expressed as a Schrödinger operator with potential $q(x) = \frac{1}{m(x)} \sum_{y \in V} (b(x, y) - b(y, x)), x, y \in V$

$$\Delta' f(x) = \frac{1}{m(x)} \sum_{y \in V} b(y, x) \big(f(x) - f(y) \big) + q(x) f(x).$$

Functional spaces Non self-adjoint Laplacians Assumption (β) and overview on Laplacians Numerical range and applications

We introduce the Assumption (β)

The Assumption (β) consists on :

for all
$$x \in V$$
, $\beta^+(x) = \beta^-(x)$.

The Assumption (β) is natural, it looks like the Kirchhoff's law in the electrical networks.

Functional spaces Non self-adjoint Laplacians Assumption (eta) and overview on Laplacians Numerical range and applications

Corolary

If the Assumption (β) is satisfied, then

$$\forall f \in \mathcal{C}_c(V), \ \Delta' f(x) = \frac{1}{m(x)} \sum_{y \in V} b(y, x) (f(x) - f(y)).$$

Commentaire

The domain of the adjoint Δ^* of Δ is given by:

$$D(\Delta^*) = \left\{ f \in \ell^2(V, m), \ \Delta' f(x) \in \ell^2(V, m) \right\}.$$

Functional spaces Non self-adjoint Laplacians Assumption (eta) and overview on Laplacians Numerical range and applications

Lemma

(Green formula) We suppose that f and g are two founctions of $\mathcal{C}_c(V).$ Then

$$(\Delta f,g)_m + \overline{(\Delta g,f)}_m = \sum_{(x,y)\in \vec{E}} b(x,y)(f(x)-f(y))(\overline{g(x)-g(y)}).$$

Functional spaces Non self-adjoint Laplacians Assumption (β) and overview on Laplacians Numerical range and applications

Definition

The numerical range of an operator T with domain D(T), denoted by W(T) is the non-empty set

$$W(T) = \{(Tf, f), f \in D(T), || f ||=1\}.$$

Proposition

 Δ is a closable operator.

Commentaire

The closure of Δ is the operator $\overline{\Delta}$ whose domain and action are

•
$$D(\overline{\Delta}) = \{ f \in \ell^2(V, m), \exists (f_n)_{n \in \mathbb{N}} \in \mathcal{C}_c(V), f_n \rightarrow f \text{ and } (\Delta f_n)_n \text{ converge } \}$$

•
$$\Delta f_n \to \overline{\Delta} f$$
, $f \in D(\overline{\Delta})$.

Plan

- Functional spaces
- Non self-adjoint Laplacians
- Assumption (β) and overview on Laplacians
- Numerical range and applications

Oheeger inequality

Absence of essential spectrum by Cheeger Theorem

Isoperimetric constants

We define the Cheeger constants on $\Omega \subset V$:

$$h(\Omega) = \inf_{\substack{U \subset \Omega \\ finite}} \frac{b(\partial_E U)}{m(U)} \text{ et } \tilde{h}(\Omega) = \inf_{\substack{U \subset \Omega \\ finite}} \frac{b(\partial_E U)}{\beta^+(U)}$$

we define in addition

$$egin{aligned} m_\Omega &= \inf\left\{rac{eta^+(x)}{m(x)}, & x\in\Omega
ight\}\ M_\Omega &= \sup\left\{rac{eta^+(x)}{m(x)}, & x\in\Omega
ight\} \end{aligned}$$

The edge boundary

Define for a finite subset U of V, the edge boundary of U

$$\partial_E U = \left\{ (x, y) \in \vec{E} : (x \in U, y \in U^c) \text{ or } (x \in U^c, y \in U) \right\}$$

its measure is given by:

$$b(\partial_E U) = \sum_{(x,y)\in\partial_E U} b(x,y).$$

The Cheeger Theorem

Theorem

Let $\Omega \subset V$, the bottom of the real part of $W(\Delta_{\Omega}^{D})$ satisfies the following control:

$$\frac{h^2(\Omega)}{8} \leq M_{\Omega}\nu(\Delta_{\Omega}^D) \leq M_{\Omega}h(\Omega) \qquad (1)$$

Proposition

$$m_{\Omega}\frac{\tilde{h}^{2}(\Omega)}{8} \leq \nu(\Delta_{\Omega}^{D}).$$
 (2)

Plan

- Functional spaces
- Non self-adjoint Laplacians
- Assumption (β) and overview on Laplacians
- Numerical range and applications

2 Cheeger inequality

The essential spectrum σ_{ess} of a closed operator A is: the set of all complex numbers for which the range $R(A - \lambda)$ is not closed or $R(A - \lambda)$ is closed and dim ker $(A - \lambda) = \infty$.

Definition

A filtration of $G = (V, \vec{E})$ is a sequence of finite connected subgraphs $\{G_n = (V_n, \vec{E}_n), n \in \mathbb{N}\}$ such that $G_n \subset G_{n+1}$ and:

$$\bigcup_{n\geq 1}V_n=V.$$

Let us denote

$$m_{\infty} = \lim_{n \to \infty} m_{V_n^c}$$

 $M_{\infty} = \lim_{n \to \infty} M_{V_n^c}$

The Cheeger constant at infinity is defined by:

$$h_{\infty} = \lim_{n \to \infty} h(V_n^c).$$

$$\eta^{ess}(\overline{\Delta}) = \inf \{ \mathcal{R}e\lambda : \lambda \in \sigma_{ess}(\overline{\Delta}) \}.$$

Theorem

The essential spectrum of $\overline{\Delta}$ satisfies:

$$\frac{h_{\infty}^2}{8} \leq M_{\infty} \eta^{ess}(\overline{\Delta})$$

and

$$m_{\infty} rac{ ilde{h}_{\infty}^2}{8} \leq \eta^{ess}(\overline{\Delta}).$$
 (3)

Definition

G is called with heavy ends if $m_{\infty} = \infty$.

Theorem

The essential spectrum of $\overline{\Delta}$ on a heavy end graph G with $\tilde{h}_{\infty} > 0$, is empty.

M. Balti

Non self-adjoint Laplacians on a directed graph. Filomat, (2017).

Thank you for your attention