On the spectra of discrete Laplacians on forms

Hèla AYADI

Kairouan University-Tunisia

31 July 2017

International Conference at the University of Potsdam, Germany Analysis and Geometry on Graphs and Manifolds

Abstract

In the context of infinite weighted graphs, we consider the discrete Laplacians on 0-forms and 1-forms. Using Weyl's criterion, we prove the relation between the nonzero spectrum of these two Laplacians. Moreover, we give an extension of the work of John Lott to characterize their 0-spectrum.

C. Anné and N.Torki-Hamza

The Gauss-Bonnet Operator of an Infinite Graph ; Analysis Mathematical Physics, 5 (2015) 137–159.

T. Shirai

The specrtum of infinite regular line graphs ; Transactions of the American Mathematical Society **352** (2000) 115–132.

J. I

The zero-in-the-spectrum question; Enseign. Math 42 (1996) 341-376.

Abstract

In the context of infinite weighted graphs, we consider the discrete Laplacians on 0-forms and 1-forms. Using Weyl's criterion, we prove the relation between the nonzero spectrum of these two Laplacians. Moreover, we give an extension of the work of John Lott to characterize their 0-spectrum.

C. Anné and N.Torki-Hamza

The Gauss-Bonnet Operator of an Infinite Graph; Analysis Mathematical Physics, 5 (2015) 137–159.

T. Shirai

The spectrum of infinite regular line graphs; Transactions of the American Mathematical Society **352** (2000) 115–132.

J. Lott

The zero-in-the-spectrum question; Enseign. Math 42 (1996) 341-376.

ヘロト ヘ戸ト ヘヨト ヘヨト

Plan

Preliminaries and notation

- Definitions and notation
- Weighted graphs
- Functionnel spaces
- Operators and properties

The relation between the spectrum of Δ_0 and Δ_1

- The nonzero spectrum of Δ₀ and Δ₁
- The 0-spectrum of Δ_0 and Δ_1

Plan

- Weighted graphs
- Functionnel spaces
- Operators and properties

The relation between the spectrum of Δ₀ and Δ
 The nonzero spectrum of Δ₀ and Δ₁

• The 0-spectrum of Δ_0 and Δ_1

If the graph G has a finite set of vertices, it is called a **finite graph**. Otherwise, G is called an **infinite graph**.

We assume that \mathcal{E} has no self-loops and is symmetric :

 $v \in \mathcal{V} \Rightarrow (v, v) \notin \mathcal{E}, \ (v_1, v_2) \in \mathcal{E} \Rightarrow (v_2, v_1) \in \mathcal{E}.$

Choosing an orientation of G consists of defining a partition of $\mathcal{E}: \mathcal{E}^+ \sqcup \mathcal{E}^- = \mathcal{E}$

$$(v_1, v_2) \in \mathcal{E}^+ \Leftrightarrow (v_2, v_1) \in \mathcal{E}^-.$$

For $e = (v_1, v_2)$, we denote

$$e^- = v_1, e^+ = v_2$$
 and $-e = (v_2, v_1)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If the graph G has a finite set of vertices, it is called a **finite graph**. Otherwise, G is called an **infinite graph**.

We assume that \mathcal{E} has no self-loops and is symmetric :

 $v \in \mathcal{V} \Rightarrow (v, v) \notin \mathcal{E}, \ (v_1, v_2) \in \mathcal{E} \Rightarrow (v_2, v_1) \in \mathcal{E}.$

Choosing an orientation of G consists of defining a partition of $\mathcal{E}: \mathcal{E}^+ \sqcup \mathcal{E}^- = \mathcal{E}$

$$(v_1, v_2) \in \mathcal{E}^+ \Leftrightarrow (v_2, v_1) \in \mathcal{E}^-.$$

For $e = (v_1, v_2)$, we denote

$$e^- = v_1, e^+ = v_2$$
 and $-e = (v_2, v_1)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If the graph G has a finite set of vertices, it is called a **finite graph**. Otherwise, G is called an **infinite graph**.

We assume that \mathcal{E} has no self-loops and is symmetric :

$$v \in \mathcal{V} \Rightarrow (v, v) \notin \mathcal{E}, \ (v_1, v_2) \in \mathcal{E} \Rightarrow (v_2, v_1) \in \mathcal{E}.$$

Choosing an orientation of G consists of defining a partition of $\mathcal{E}: \mathcal{E}^+ \sqcup \mathcal{E}^- = \mathcal{E}$

$$(v_1, v_2) \in \mathcal{E}^+ \Leftrightarrow (v_2, v_1) \in \mathcal{E}^-.$$

For $e = (v_1, v_2)$, we denote

$$e^- = v_1, e^+ = v_2$$
 and $-e = (v_2, v_1)$.

< ロ > < 四 > < 回 > < 回 > < 回

If the graph G has a finite set of vertices, it is called a **finite graph**. Otherwise, G is called an **infinite graph**.

We assume that \mathcal{E} has no self-loops and is symmetric :

$$v \in \mathcal{V} \Rightarrow (v, v) \notin \mathcal{E}, \ (v_1, v_2) \in \mathcal{E} \Rightarrow (v_2, v_1) \in \mathcal{E}.$$

Choosing an orientation of *G* consists of defining a partition of $\mathcal{E}: \mathcal{E}^+ \sqcup \mathcal{E}^- = \mathcal{E}$

$$(v_1, v_2) \in \mathcal{E}^+ \Leftrightarrow (v_2, v_1) \in \mathcal{E}^-.$$

For $e = (v_1, v_2)$, we denote

$$e^- = v_1, \ e^+ = v_2 \text{ and } - e = (v_2, v_1).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$e_1^- = x, \ e_n^+ = y \text{ and, if } n \ge 2, \ \forall j \ ; 1 \le j \le (n-1) \Rightarrow e_j^+ = e_{j+1}^-.$$

A cycle is a path whose end and origin are identical $(e_n^+ = e_1^-)$.

A tree is a connected graph containing no cycles.

The degree (or valence) of a vertex x is the number of edges emanating from x. We denote

$$\deg(x) := \sharp \{ e \in \mathcal{E}; \ e^- = x \}.$$

If $deg(x) < \infty$, $\forall x \in \mathcal{V}$, we say that *G* is a **locally finite graph**.

$$e_1^- = x, \ e_n^+ = y \text{ and, if } n \ge 2, \ \forall j \ ; 1 \le j \le (n-1) \Rightarrow e_j^+ = e_{j+1}^-.$$

A cycle is a path whose end and origin are identical $(e_n^+ = e_1^-)$.

A tree is a connected graph containing no cycles.

The degree (or valence) of a vertex x is the number of edges emanating from x. We denote

$$\deg(x) := \sharp \{ e \in \mathcal{E}; \ e^- = x \}.$$

If deg(*x*) < ∞ , $\forall x \in \mathcal{V}$, we say that *G* is a **locally finite graph**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$e_1^- = x, \ e_n^+ = y \text{ and, if } n \ge 2, \ \forall j \ ; 1 \le j \le (n-1) \Rightarrow e_j^+ = e_{j+1}^-.$$

A cycle is a path whose end and origin are identical $(e_n^+ = e_1^-)$.

A tree is a connected graph containing no cycles.

The degree (or valence) of a vertex x is the number of edges emanating from x. We denote

 $\deg(x) := \sharp \{ e \in \mathcal{E}; \ e^- = x \}.$

If $deg(x) < \infty$, $\forall x \in \mathcal{V}$, we say that *G* is a **locally finite graph**.

$$e_1^- = x, \ e_n^+ = y \text{ and, if } n \ge 2, \ \forall j \ ; 1 \le j \le (n-1) \Rightarrow e_j^+ = e_{j+1}^-.$$

A cycle is a path whose end and origin are identical $(e_n^+ = e_1^-)$.

A tree is a connected graph containing no cycles.

The degree (or valence) of a vertex x is the number of edges emanating from x. We denote

$$\deg(x) := \sharp \{ e \in \mathcal{E}; \ e^- = x \}.$$

If $deg(x) < \infty$, $\forall x \in \mathcal{V}$, we say that *G* is a **locally finite graph**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$e_1^- = x, \ e_n^+ = y \text{ and, if } n \ge 2, \ \forall j \ ; 1 \le j \le (n-1) \Rightarrow e_j^+ = e_{j+1}^-.$$

A cycle is a path whose end and origin are identical $(e_n^+ = e_1^-)$.

A tree is a connected graph containing no cycles.

The degree (or valence) of a vertex x is the number of edges emanating from x. We denote

$$\deg(x) := \sharp \{ e \in \mathcal{E}; \ e^- = x \}.$$

If $deg(x) < \infty$, $\forall x \in \mathcal{V}$, we say that *G* is a **locally finite graph**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Plan

- Definitions and notation
- Weighted graphs
- Functionnel spaces
- Operators and properties

The relation between the spectrum of Δ₀ and Δ₁
The nonzero spectrum of Δ₀ and Δ₁
The 0-spectrum of Δ₀ and Δ₁

- $c(x,x) = 0, \forall x \in \mathcal{V}.$
- $c(x,y) > 0, \ \forall (x,y) \in \mathcal{E}.$
- $c(x,y) = c(y,x), \ \forall (x,y) \in \mathcal{E}.$

If $\sum_{y \sim x} c(x, y) < \infty$ for each $x \in \mathcal{V}$, we can define a weight on \mathcal{V} by

$$\tilde{c}(x) = \sum_{y \sim x} c(x, y), \ x \in \mathcal{V}.$$

Remark

If the graph G is locally finite, the weight \tilde{c} on any vertex is well defined.

- $c(x,x) = 0, \forall x \in \mathcal{V}.$
- $c(x,y) > 0, \ \forall (x,y) \in \mathcal{E}.$
- $c(x,y) = c(y,x), \ \forall (x,y) \in \mathcal{E}.$

If $\sum_{y \sim x} c(x, y) < \infty$ for each $x \in \mathcal{V}$, we can define a weight on \mathcal{V} by

$$\tilde{c}(x) = \sum_{y \sim x} c(x, y), \ x \in \mathcal{V}.$$

Remark

If the graph G is locally finite, the weight \tilde{c} on any vertex is well defined.

- $c(x,x) = 0, \forall x \in \mathcal{V}.$
- $c(x,y) > 0, \ \forall (x,y) \in \mathcal{E}.$
- $c(x,y) = c(y,x), \ \forall (x,y) \in \mathcal{E}.$

If $\sum_{y \sim x} c(x, y) < \infty$ for each $x \in \mathcal{V}$, we can define a weight on \mathcal{V} by

$$\tilde{c}(x) = \sum_{y \sim x} c(x, y), \ x \in \mathcal{V}.$$

Remark

If the graph G is locally finite, the weight \tilde{c} on any vertex is well defined.

- $c(x,x) = 0, \forall x \in \mathcal{V}.$
- $c(x,y) > 0, \ \forall (x,y) \in \mathcal{E}.$
- $c(x,y) = c(y,x), \ \forall (x,y) \in \mathcal{E}.$

If $\sum_{y \sim x} c(x, y) < \infty$ for each $x \in \mathcal{V}$, we can define a weight on \mathcal{V} by

$$\tilde{c}(x) = \sum_{y \sim x} c(x, y), \ x \in \mathcal{V}.$$

Remark

If the graph G is locally finite, the weight \tilde{c} on any vertex is well defined.

Exemples :

Star graph :

Infinite network :

Plan

- Definitions and notation
- Weighted graphs
- Functionnel spaces
- Operators and properties

2) The relation between the spectrum of Δ₀ and Δ
• The nonzero spectrum of Δ₀ and Δ₁
• The nonzero spectrum of Δ₀ and Δ₁

• The 0-spectrum of Δ_0 and Δ_1

We define on G the following function spaces endowed with the scalar products.

a)

$$l^2(\mathcal{V}) := \left\{ f \in \mathcal{C}(\mathcal{V}); \sum_{x \in \mathcal{V}} \tilde{c}(x) f^2(x) < \infty \right\},$$

with the inner product

$$\langle f,g \rangle_{\mathcal{V}} = \sum_{x \in \mathcal{V}} \tilde{c}(x) f(x) g(x)$$

and the norm

$$\|f\|_{\mathcal{V}} = \sqrt{\langle f, f \rangle_{\mathcal{V}}}.$$

$$l^2(\mathcal{E}) := \left\{ \varphi \in \mathcal{C}^a(\mathcal{E}); \; rac{1}{2} \sum_{e \in \mathcal{E}} c(e) \varphi^2(e) < \infty
ight\},$$

$$\langle \varphi, \psi \rangle_{\mathcal{E}} = \frac{1}{2} \sum_{e \in \mathcal{E}} c(e) \varphi(e) \psi(e)$$

$$\left\|\varphi\right\|_{\mathcal{E}} = \sqrt{\langle\varphi,\varphi\rangle_{\mathcal{E}}}$$

< 口 > < 同

3 →

Hèla AYADI

We define on G the following function spaces endowed with the scalar products.

a)

$$l^2(\mathcal{V}) := \left\{ f \in \mathcal{C}(\mathcal{V}); \sum_{x \in \mathcal{V}} \tilde{c}(x) f^2(x) < \infty \right\},$$

with the inner product

$$\langle f,g \rangle_{\mathcal{V}} = \sum_{x \in \mathcal{V}} \tilde{c}(x) f(x) g(x)$$

and the norm

$$\|f\|_{\mathcal{V}} = \sqrt{\langle f, f \rangle_{\mathcal{V}}}.$$

b)

$$l^2(\mathcal{E}) := \left\{ \varphi \in \mathcal{C}^a(\mathcal{E}); \ \frac{1}{2} \sum_{e \in \mathcal{E}} c(e) \varphi^2(e) < \infty \right\},$$

with the inner product

$$\langle \varphi, \psi \rangle_{\mathcal{E}} = \frac{1}{2} \sum_{e \in \mathcal{E}} c(e) \varphi(e) \psi(e)$$

and the norm

$$\left\|\varphi\right\|_{\mathcal{E}} = \sqrt{\langle \varphi, \varphi \rangle_{\mathcal{E}}}$$

Hèla AYADI

We define on G the following function spaces endowed with the scalar products.

a)

$$l^2(\mathcal{V}) := \left\{ f \in \mathcal{C}(\mathcal{V}); \sum_{x \in \mathcal{V}} \tilde{c}(x) f^2(x) < \infty \right\},$$

with the inner product

$$\langle f,g \rangle_{\mathcal{V}} = \sum_{x \in \mathcal{V}} \tilde{c}(x) f(x) g(x)$$

and the norm

$$\|f\|_{\mathcal{V}} = \sqrt{\langle f, f \rangle_{\mathcal{V}}}.$$

b)

$$l^2(\mathcal{E}) := \left\{ \varphi \in \mathcal{C}^a(\mathcal{E}); \ \frac{1}{2} \sum_{e \in \mathcal{E}} c(e) \varphi^2(e) < \infty \right\},$$

with the inner product

$$\langle \varphi, \psi \rangle_{\mathcal{E}} = rac{1}{2} \sum_{e \in \mathcal{E}} c(e) \varphi(e) \psi(e)$$

and the norm

$$\left\|\varphi\right\|_{\mathcal{E}} = \sqrt{\langle \varphi, \varphi \rangle_{\mathcal{E}}}$$

Then, $l^2(\mathcal{V})$ and $l^2(\mathcal{E})$ are separable Hilbert spaces.

Hèla AYADI

Plan

Preliminaries and notation

- Definitions and notation
- Weighted graphs
- Functionnel spaces
- Operators and properties

The relation between the spectrum of Δ₀ and Δ
 The nonzero spectrum of Δ₀ and Δ₁

• The 0-spectrum of Δ_0 and Δ_1

The difference operator : is the operator

$$\mathrm{d}:l^{2}(\mathcal{V})\longrightarrow l^{2}(\mathcal{E}),$$

is given by

$$d(f)(e) = f(e^+) - f(e^-).$$

The coboundary operator : is δ , the formal adjoint of d. Thus it satisfies

$$\langle \mathrm{d}f, \varphi \rangle_{\mathcal{E}} = \langle f, \delta \varphi \rangle_{\mathcal{V}}$$

for all
$$f \in l^2(\mathcal{V})$$
 and for all $\varphi \in l^2(\mathcal{E})$.

Lemma

The coboundary operator δ is characterized by the formula

$$\delta \varphi(x) = \frac{1}{\tilde{c}(x)} \sum_{e,e^+ = x} c(e) \varphi(e),$$

for all $\varphi \in l^2(\mathcal{E})$.

The difference operator : is the operator

$$d: l^2(\mathcal{V}) \longrightarrow l^2(\mathcal{E}),$$

is given by

$$\mathbf{d}(f)(e) = f(e^+) - f(e^-).$$

The coboundary operator : is δ , the formal adjoint of d. Thus it satisfies

$$\langle \mathrm{d}f, \varphi \rangle_{\mathcal{E}} = \langle f, \delta \varphi \rangle_{\mathcal{V}}$$

for all $f \in l^2(\mathcal{V})$ and for all $\varphi \in l^2(\mathcal{E})$.

Lemma

The coboundary operator δ is characterized by the formula

$$\delta \varphi(x) = \frac{1}{\tilde{c}(x)} \sum_{e,e^+=x} c(e)\varphi(e),$$

for all $\varphi \in l^2(\mathcal{E})$.

The difference operator : is the operator

$$d: l^2(\mathcal{V}) \longrightarrow l^2(\mathcal{E}),$$

is given by

$$\mathbf{d}(f)(e) = f(e^+) - f(e^-).$$

The coboundary operator : is δ , the formal adjoint of d. Thus it satisfies

$$\langle \mathrm{d} f, \varphi \rangle_{\mathcal{E}} = \langle f, \delta \varphi \rangle_{\mathcal{V}}$$

for all $f \in l^2(\mathcal{V})$ and for all $\varphi \in l^2(\mathcal{E})$.

Lemma

The coboundary operator δ is characterized by the formula

$$\delta \varphi(x) = \frac{1}{\tilde{c}(x)} \sum_{e,e^+=x} c(e)\varphi(e),$$

for all $\varphi \in l^2(\mathcal{E})$.

Definition

The Laplacian on 0-forms Δ_0 **defined by** δd on $l^2(\mathcal{V})$ is given by

$$\Delta_0 f(x) = \frac{1}{\tilde{c}(x)} \sum_{y \sim x} c(x, y) \left(f(x) - f(y) \right).$$

In fact, we have

$$\begin{split} \Delta_0 f(x) &= \delta(\mathrm{d} f)(x) \\ &= \frac{1}{\tilde{c}(x)} \sum_{e,e^+ = x} c(e) \mathrm{d} f(e) \\ &= \frac{1}{\tilde{c}(x)} \sum_{e,e^+ = x} c(e) \left(f(e^+) - f(e^-) \right) \\ &= \frac{1}{\tilde{c}(x)} \sum_{y \sim x} c(x,y) \left(f(x) - f(y) \right). \end{split}$$

Definition

The Laplacian on 1-forms Δ_1 defined by $d\delta$ on $l^2(\mathcal{E})$ is given by

$$\Delta_1 \varphi(e) = \frac{1}{\tilde{c}(e^+)} \sum_{e_1, e_1^+ = e^+} c(e_1) \varphi(e_1) - \frac{1}{\tilde{c}(e^-)} \sum_{e_2, e_2^+ = e^-} c(e_2) \varphi(e_2).$$

In fact, we have

$$\begin{aligned} \Delta_1 \varphi(e) &= \mathrm{d}(\delta \varphi)(e) \\ &= \delta \varphi(e^+) - \delta \varphi(e^-) \\ &= \frac{1}{\tilde{c}(e^+)} \sum_{e_1, e_1^+ = e^+} c(e_1) \varphi(e_1) - \frac{1}{\tilde{c}(e^-)} \sum_{e_2, e_2^+ = e^-} c(e_2) \varphi(e_2). \end{aligned}$$

Proposition

The operator Δ_0 *is bounded and self-adjoint.*

Remark

The operators d and δ are bounded. Notice that since Δ_1 is the composite operator of d and δ , this gives another proof that Δ_1 is bounded.

Remark

As the operator Δ_0 is bounded, self-adjoint and positive, its spectrum is real and lies in [0,2].

Proposition

The operator Δ_0 *is bounded and self-adjoint.*

Remark

The operators d and δ are bounded. Notice that since Δ_1 is the composite operator of d and δ , this gives another proof that Δ_1 is bounded.

Remark

As the operator Δ_0 is bounded, self-adjoint and positive, its spectrum is real and lies in [0,2].

Proposition

The operator Δ_0 *is bounded and self-adjoint.*

Remark

The operators d and δ are bounded. Notice that since Δ_1 is the composite operator of d and δ , this gives another proof that Δ_1 is bounded.

Remark

As the operator Δ_0 is bounded, self-adjoint and positive, its spectrum is real and lies in [0,2].

Plan

Preliminaries and notation

- Definitions and notation
- Weighted graphs
- Functionnel spaces
- Operators and properties

The relation between the spectrum of Δ₀ and Δ₁
The nonzero spectrum of Δ₀ and Δ₁

• The 0-spectrum of Δ_0 and Δ_1

$\sigma(\Delta_1) \setminus \{0\} = \sigma(\Delta_0) \setminus \{0\}.$

Sketch of the proof :

•
$$d\Delta_0 = \Delta_1 d$$
.

•
$$\delta \Delta_1 = \Delta_0 \delta$$
.

2 Weyl's criterion : Let \mathcal{H} be a separable Hilbert space, and let Δ be a bounded self-adjoint operator on \mathcal{H} . Then λ is in the spectrum of Δ if and only if there exists a sequence $(f_n)_{n \in \mathbb{N}}$ so that $||f_n|| = 1$ and $\lim_{n \to \infty} ||(\Delta - \lambda)f_n|| = 0$.

< 口 > < 同

()

$\sigma(\Delta_1)\setminus\{0\}=\sigma(\Delta_0)\setminus\{0\}.$

Sketch of the proof :

•
$$d\Delta_0 = \Delta_1 d.$$

•
$$\delta \Delta_1 = \Delta_0 \delta.$$

Weyl's criterion : Let \mathcal{H} be a separable Hilbert space, and let Δ be a bounded self-adjoint operator on \mathcal{H} . Then λ is in the spectrum of Δ if and only if there exists a sequence $(f_n)_{n \in \mathbb{N}}$ so that $||f_n|| = 1$ and $\lim_{n \to \infty} ||(\Delta - \lambda)f_n|| = 0$.

< ∃ >

$\sigma(\Delta_1)\setminus\{0\}=\sigma(\Delta_0)\setminus\{0\}.$

Sketch of the proof :

•
$$d\Delta_0 = \Delta_1 d$$
.

•
$$\delta \Delta_1 = \Delta_0 \delta.$$

2 Weyl's criterion : Let \mathcal{H} be a separable Hilbert space, and let Δ be a bounded self-adjoint operator on \mathcal{H} . Then λ is in the spectrum of Δ if and only if there exists a sequence $(f_n)_{n \in \mathbb{N}}$ so that $||f_n|| = 1$ and $\lim_{n \to \infty} ||(\Delta - \lambda)f_n|| = 0$.

.⊒ . ►

$\sigma(\Delta_1)\setminus\{0\}=\sigma(\Delta_0)\setminus\{0\}.$

Sketch of the proof :

•
$$d\Delta_0 = \Delta_1 d.$$

•
$$\delta \Delta_1 = \Delta_0 \delta$$
.

2 <u>Weyl's criterion</u>: Let \mathcal{H} be a separable Hilbert space, and let Δ be a bounded self-adjoint operator on \mathcal{H} . Then λ is in the spectrum of Δ if and only if there exists a sequence $(f_n)_{n \in \mathbb{N}}$ so that $||f_n|| = 1$ and $\lim_{n \to \infty} ||(\Delta - \lambda)f_n|| = 0$.

Plan

Preliminaries and notation

- Definitions and notation
- Weighted graphs
- Functionnel spaces
- Operators and properties

The relation between the spectrum of Δ₀ and Δ₁
 The nonzero spectrum of Δ₀ and Δ₁

• The 0-spectrum of Δ_0 and Δ_1

First, we start with preliminary results.

Definition

The graph G verifies the isoperimetric inequality if there exists a constant C > 0 such that for all finite sub-graphs $G_U = (U, \mathcal{E}_U)$ of G, we have

 $\left|\partial \mathcal{E}_{U}\right| \geq C\left|U\right|,$

where

$$|\partial \mathcal{E}_U| = \sum_{x \in U} \sum_{y \notin U} c(x, y) \text{ and } |U| = \sum_{x \in U} \tilde{c}(x).$$

Lemma

If Δ_0 is invertible then the isoperimetric inequality holds.

< 口 > < 同

• = • • =

First, we start with preliminary results.

Definition

The graph G verifies the isoperimetric inequality if there exists a constant C > 0 such that for all finite sub-graphs $G_U = (U, \mathcal{E}_U)$ of G, we have

 $\left|\partial \mathcal{E}_{U}\right| \geq C\left|U\right|,$

where

$$|\partial \mathcal{E}_U| = \sum_{x \in U} \sum_{y \notin U} c(x, y) \text{ and } |U| = \sum_{x \in U} \tilde{c}(x).$$

Lemma

If Δ_0 is invertible then the isoperimetric inequality holds.

First, we start with preliminary results.

Definition

The graph G verifies the isoperimetric inequality if there exists a constant C > 0 such that for all finite sub-graphs $G_U = (U, \mathcal{E}_U)$ of G, we have

 $\left|\partial \mathcal{E}_{U}\right| \geq C\left|U\right|,$

where

$$|\partial \mathcal{E}_U| = \sum_{x \in U} \sum_{y \notin U} c(x, y) \text{ and } |U| = \sum_{x \in U} \tilde{c}(x).$$

Lemma

If Δ_0 is invertible then the isoperimetric inequality holds.

Definition

- A branch B is a finite sequence of vertices $x_0, x_1, ..., x_{m+1}$ such that for all j; $1 \le j \le m$, we have $\deg(x_j) = 2$.
- The length of a branch B, denoted long(B), is the number of vertices in this branch, here, long(B) = m + 2.
- The interior of the branch B is the set of vertices x_j of B satisfying the following conditions:
 i) deg(x_j) = 2.
 ii) ∀y ∈ V; y ~ x_j ⇒ y ∈ B.

FIGURE : A branch of length m + 2

Instead of the argument of J. Lott, we use the following lemma :

Lemma

We suppose that the following conditions are satisfied :

- The weight on edges c is bounded, i.e., there exists a constant $\alpha > 0$ such that $\frac{1}{\alpha} \leq c(x, y) \leq \alpha, \forall (x, y) \in \mathcal{E}.$
- The operator Δ_0 is invertible.
- The operator Δ_1 is injective.

Then the graph (G, c) is a tree which contains branches with uniformly bounded lengths, that means $\exists M > 0, \forall B \text{ branch of } G, \log(B) \leq M.$

Let (G, c) be a connected, locally finite and weighted infinite graph such that the weight on edges c is bounded, i.e., there exists a constant $\alpha > 0$ such that $\frac{1}{\alpha} \leq c(x, y) \leq \alpha$, for all $(x, y) \in \mathcal{E}$. Then

 $0 \in \sigma(\Delta_1)$ or $0 \in \sigma(\Delta_0)$.

H. Ayadi

Spectra of Laplacians on forms on an infinite graph; Published in journal Operators and Matrices 2017.

Let (G, c) be a connected, locally finite and weighted infinite graph such that the weight on edges c is bounded, i.e., there exists a constant $\alpha > 0$ such that $\frac{1}{\alpha} \leq c(x, y) \leq \alpha$, for all $(x, y) \in \mathcal{E}$. Then

 $0 \in \sigma(\Delta_1)$ or $0 \in \sigma(\Delta_0)$.

H. Ayadi

Spectra of Laplacians on forms on an infinite graph; Published in journal Operators and Matrices 2017.

Thank you for your attention

-∢ ∃ >