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Abstract

In the context of infinite weighted graphs, we consider the discrete Laplacians on 0-forms

and 1-forms. Using Weyl’s criterion, we prove the relation between the nonzero spectrum

of these two Laplacians. Moreover, we give an extension of the work of John Lott to

characterize their 0-spectrum .
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Preliminaries and notation Definitions and notation

A graph G is a couple (V, E) where V is a set at most countable whose elements are called
vertices and E is a set of oriented edges, considered as a subset of V × V .

If the graph G has a finite set of vertices, it is called a finite graph. Otherwise, G is called an
infinite graph.

We assume that E has no self-loops and is symmetric :

v ∈ V ⇒ (v, v) /∈ E , (v1, v2) ∈ E ⇒ (v2, v1) ∈ E .

Choosing an orientation of G consists of defining a partition of E : E+ t E− = E

(v1, v2) ∈ E+ ⇔ (v2, v1) ∈ E−.

For e = (v1, v2), we denote

e− = v1, e+ = v2 and − e = (v2, v1).
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Preliminaries and notation Definitions and notation

The graph G is connected if any two vertices x, y in V can be joined by a path of edges γxy,
that means γxy = {ek}k=1,...,n such that

e−1 = x, e+
n = y and, if n ≥ 2 , ∀j ; 1 ≤ j ≤ (n− 1)⇒ e+

j = e−j+1.

A cycle is a path whose end and origin are identical (e+
n = e−1 ).

A tree is a connected graph containing no cycles.

The degree (or valence) of a vertex x is the number of edges emanating from x. We denote

deg(x) := ]{e ∈ E ; e− = x}.

If deg(x) <∞, ∀x ∈ V , we say that G is a locally finite graph.
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Preliminaries and notation Weighted graphs

A weighted graph (G, c) is given by a graph G = (V, E) and weights on the edges
c : E → [0,∞[ such that

c(x, x) = 0, ∀x ∈ V .

c(x, y) > 0, ∀(x, y) ∈ E .
c(x, y) = c(y, x), ∀(x, y) ∈ E .

If
∑

y∼x c(x, y) <∞ for each x ∈ V , we can define a weight on V by

c̃(x) =
∑
y∼x

c(x, y), x ∈ V.

Remark
If the graph G is locally finite, the weight c̃ on any vertex is well defined.

All the graphs we shall consider will be connected, locally finite
and weighted .
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Preliminaries and notation Weighted graphs

Exemples :

Star graph :

a

b

c

d

e

f

Hèla AYADI On the spectra of discrete Laplacians on forms 31 July 2017 9 / 25



Preliminaries and notation Weighted graphs

Infinite network :
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Preliminaries and notation Functionnel spaces
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Preliminaries and notation Functionnel spaces

We define on G the following function spaces endowed with the scalar products.

a)

l2(V) :=

{
f ∈ C(V);

∑
x∈V

c̃(x)f 2(x) <∞

}
,

with the inner product
〈f , g〉V =

∑
x∈V

c̃(x)f (x)g(x)

and the norm
‖f‖V =

√
〈f , f 〉V .

b)

l2(E) :=

{
ϕ ∈ Ca(E);

1
2

∑
e∈E

c(e)ϕ2(e) <∞

}
,

with the inner product

〈ϕ,ψ〉E =
1
2

∑
e∈E

c(e)ϕ(e)ψ(e)

and the norm
‖ϕ‖E =

√
〈ϕ,ϕ〉E .

Then, l2(V) and l2(E) are separable Hilbert spaces.
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Preliminaries and notation Operators and properties
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Preliminaries and notation Operators and properties

The difference operator : is the operator

d : l2(V) −→ l2(E),

is given by
d(f )(e) = f (e+)− f (e−).

The coboundary operator : is δ, the formal adjoint of d. Thus it satisfies

〈df , ϕ〉E = 〈f , δϕ〉V

for all f ∈ l2(V) and for all ϕ ∈ l2(E).

Lemma

The coboundary operator δ is characterized by the formula

δϕ(x) =
1

c̃(x)

∑
e,e+=x

c(e)ϕ(e),

for all ϕ ∈ l2(E).
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Preliminaries and notation Operators and properties

Definition

The Laplacian on 0-forms ∆0 defined by δd on l2(V) is given by

∆0f (x) =
1

c̃(x)

∑
y∼x

c(x, y) (f (x)− f (y)) .

In fact, we have

∆0f (x) = δ(df )(x)

=
1

c̃(x)

∑
e,e+=x

c(e)df (e)

=
1

c̃(x)

∑
e,e+=x

c(e)
(
f (e+)− f (e−)

)
=

1
c̃(x)

∑
y∼x

c(x, y) (f (x)− f (y)) .
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Preliminaries and notation Operators and properties

Definition

The Laplacian on 1-forms ∆1 defined by dδ on l2(E) is given by

∆1ϕ(e) =
1

c̃(e+)

∑
e1,e

+
1 =e+

c(e1)ϕ(e1)−
1

c̃(e−)

∑
e2,e

+
2 =e−

c(e2)ϕ(e2).

In fact, we have

∆1ϕ(e) = d(δϕ)(e)

= δϕ(e+)− δϕ(e−)

=
1

c̃(e+)

∑
e1,e

+
1 =e+

c(e1)ϕ(e1)−
1

c̃(e−)

∑
e2,e

+
2 =e−

c(e2)ϕ(e2).

Hèla AYADI On the spectra of discrete Laplacians on forms 31 July 2017 16 / 25



Preliminaries and notation Operators and properties

Proposition

The operator ∆0 is bounded and self-adjoint.

Remark
The operators d and δ are bounded. Notice that since ∆1 is the composite operator of d and δ,
this gives another proof that ∆1 is bounded.

Remark

As the operator ∆0 is bounded, self-adjoint and positive, its spectrum is real and lies in [0, 2].
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The relation between the spectrum of ∆0 and ∆1 The nonzero spectrum of ∆0 and ∆1
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The relation between the spectrum of ∆0 and ∆1 The nonzero spectrum of ∆0 and ∆1

Theorem

σ(∆1) \ {0} = σ(∆0) \ {0}.

Sketch of the proof :

1 We have

d∆0 = ∆1d.
δ∆1 = ∆0δ.

2 Weyl’s criterion : LetH be a separable Hilbert space, and let ∆ be a bounded
self-adjoint operator onH. Then λ is in the spectrum of ∆ if and only if there exists a
sequence (fn)n∈N so that ‖fn‖ = 1 and lim

n→∞
‖(∆− λ)fn‖ = 0.

Hèla AYADI On the spectra of discrete Laplacians on forms 31 July 2017 19 / 25



The relation between the spectrum of ∆0 and ∆1 The nonzero spectrum of ∆0 and ∆1

Theorem

σ(∆1) \ {0} = σ(∆0) \ {0}.

Sketch of the proof :

1 We have

d∆0 = ∆1d.
δ∆1 = ∆0δ.

2 Weyl’s criterion : LetH be a separable Hilbert space, and let ∆ be a bounded
self-adjoint operator onH. Then λ is in the spectrum of ∆ if and only if there exists a
sequence (fn)n∈N so that ‖fn‖ = 1 and lim

n→∞
‖(∆− λ)fn‖ = 0.

Hèla AYADI On the spectra of discrete Laplacians on forms 31 July 2017 19 / 25



The relation between the spectrum of ∆0 and ∆1 The nonzero spectrum of ∆0 and ∆1

Theorem

σ(∆1) \ {0} = σ(∆0) \ {0}.

Sketch of the proof :

1 We have

d∆0 = ∆1d.
δ∆1 = ∆0δ.

2 Weyl’s criterion : LetH be a separable Hilbert space, and let ∆ be a bounded
self-adjoint operator onH. Then λ is in the spectrum of ∆ if and only if there exists a
sequence (fn)n∈N so that ‖fn‖ = 1 and lim

n→∞
‖(∆− λ)fn‖ = 0.

Hèla AYADI On the spectra of discrete Laplacians on forms 31 July 2017 19 / 25



The relation between the spectrum of ∆0 and ∆1 The nonzero spectrum of ∆0 and ∆1

Theorem

σ(∆1) \ {0} = σ(∆0) \ {0}.

Sketch of the proof :

1 We have

d∆0 = ∆1d.
δ∆1 = ∆0δ.

2 Weyl’s criterion : LetH be a separable Hilbert space, and let ∆ be a bounded
self-adjoint operator onH. Then λ is in the spectrum of ∆ if and only if there exists a
sequence (fn)n∈N so that ‖fn‖ = 1 and lim

n→∞
‖(∆− λ)fn‖ = 0.

Hèla AYADI On the spectra of discrete Laplacians on forms 31 July 2017 19 / 25



The relation between the spectrum of ∆0 and ∆1 The 0-spectrum of ∆0 and ∆1
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The relation between the spectrum of ∆0 and ∆1 The 0-spectrum of ∆0 and ∆1

First, we start with preliminary results.

Definition
The graph G verifies the isoperimetric inequality if there exists a constant C > 0 such that for
all finite sub-graphs GU = (U, EU) of G, we have

|∂EU| ≥ C |U| ,

where
|∂EU| =

∑
x∈U

∑
y/∈U

c(x, y) and |U| =
∑
x∈U

c̃(x).

Lemma

If ∆0 is invertible then the isoperimetric inequality holds.
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The relation between the spectrum of ∆0 and ∆1 The 0-spectrum of ∆0 and ∆1

Definition

A branch B is a finite sequence of vertices x0, x1, .., xm+1 such that for all j; 1 ≤ j ≤ m,
we have deg(xj) = 2.

The length of a branch B, denoted long(B), is the number of vertices in this branch, here,
long(B) = m + 2.

The interior of the branch B is the set of vertices xj of B satisfying the following
conditions :
i) deg(xj) = 2.
ii) ∀y ∈ V; y ∼ xj ⇒ y ∈ B.
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FIGURE : A branch of length m + 2
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The relation between the spectrum of ∆0 and ∆1 The 0-spectrum of ∆0 and ∆1

Instead of the argument of J. Lott, we use the following lemma :

Lemma

We suppose that the following conditions are satisfied :

The weight on edges c is bounded, i.e., there exists a constant α > 0 such that
1
α
≤ c(x, y) ≤ α, ∀(x, y) ∈ E .

The operator ∆0 is invertible.

The operator ∆1 is injective.

Then the graph (G, c) is a tree which contains branches with uniformly bounded lengths, that
means ∃M > 0, ∀B branch of G, long(B) ≤ M.
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The relation between the spectrum of ∆0 and ∆1 The 0-spectrum of ∆0 and ∆1

Theorem

Let (G, c) be a connected, locally finite and weighted infinite graph such that the weight on
edges c is bounded, i.e., there exists a constant α > 0 such that 1

α
≤ c(x, y) ≤ α, for all

(x, y) ∈ E . Then
0 ∈ σ(∆1) or 0 ∈ σ(∆0).

H. Ayadi
Spectra of Laplacians on forms on an infinite graph ; Published in journal Operators and
Matrices 2017.

Hèla AYADI On the spectra of discrete Laplacians on forms 31 July 2017 24 / 25



The relation between the spectrum of ∆0 and ∆1 The 0-spectrum of ∆0 and ∆1

Theorem

Let (G, c) be a connected, locally finite and weighted infinite graph such that the weight on
edges c is bounded, i.e., there exists a constant α > 0 such that 1

α
≤ c(x, y) ≤ α, for all

(x, y) ∈ E . Then
0 ∈ σ(∆1) or 0 ∈ σ(∆0).

H. Ayadi
Spectra of Laplacians on forms on an infinite graph ; Published in journal Operators and
Matrices 2017.

Hèla AYADI On the spectra of discrete Laplacians on forms 31 July 2017 24 / 25



Thank you

for your attention
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