Analysis auf Graphen

Wintersemester 2015/2016

Prof. Dr. M. Keller

Blatt 9

Abgabe 12.01.2016

Sei (b, c) ein Graph über (X, \deg) mit

$$\deg(x) = \sum_{y \in X} b(x, y) + c(x).$$

Sei $P:\ell^2(X,\deg)\to\ell^2(X,\deg)$ ein Operator mit Matrix $p:X\times X\to [0,\infty)$ gegeben durch

$$p(x,y) = \frac{b(x,y)}{\deg(x)}$$

d.h.

$$Pf(x) = \sum_{y \in X} p(x, y) f(y).$$

Sei weiterhin $p_n: X \times X \to [0, \infty)$ die Matrix der n-ten Potenz $P^n = P \circ \ldots \circ P$ des Operators P. Sei $Y = (Y_n)$ die Markovkette die gegeben ist durch die Übergangswahrscheinlichkeiten

$$\mathbb{P}(Y_{n+1} = y \mid Y_n = x) = p(x, y), \quad x, y \in X.$$

(1) Zeigen Sie, dass P kontrahierend und selbstadjungiert auf $\ell^2(X, m)$ ist, d.h. für alle $f, g \in \ell^2(X, m)$

$$||Pf|| \le ||f||$$
 and $\langle Pf, g \rangle = \langle f, Pg \rangle$.

(2) (a) Zeigen Sie

$$\mathbb{P}(Y_n = y \mid Y_0 = x) = p_n(x, y), \quad x, y \in X.$$

- (b) Zeigen Sie, dass (b,c) genau dann zusammenhängend ist falls für alle $x,y \in X$ ein n existiert, so dass $p_n(x,y) > 0$.
- (3) Geben Sie ein Beispiel eines zusammmenhängenden Graphen, so dass für alle $n \in \mathbb{N}$ Vertizes $x, y \in X$ existieren mit

$$p_n(x,y)=0.$$

- (4) Sei $b: X \times X \to \{0,1\}$ und c = 0.
 - (a) Zeigen Sie, dass für den größten Eigenwert μ_0 von P gilt $\mu_0 = 1$.
 - (b) Sei weiterhin $E = \{(x,y) \in X \mid b(x,y) = 1\}$ die Menge der gerichteten Kanten und $D = \sup_{x,y \in X} d(x,y)$ der Durchmesser bzgl. der kombinatorischen Graphenmetrik, d.h. $d(x,y) = \min\{n \mid \text{es gibt } x = x_0 \sim \ldots \sim x_n = y\}$. Dann gilt für den zweitgrößten Eigenwert μ_1

$$1 - \mu_1 \ge \frac{1}{D\#E}$$

Zusatzaufgaben

- (Z1) Zeigen Sie, dass P aus Aufgabe (1) sogar kontrahierend auf $\ell^p(X,\deg)$, $1 \le p \le \infty$, ist
- (Z2) Geben Sie eine Charakterisierung aller Graphen mit der Eigenschaft aus Aufgabe (3) an.