Analysis auf Graphen

Wintersemester 2015/2016

Prof. Dr. M. Keller

Blatt 10

Abgabe 20.01.2016

Sei (b, c) ein endlicher Graph über (X, \deg) mit

$$\deg(x) = \sum_{y \in X} b(x, y) + c(x).$$

Sei $P:\ell^2(X,\deg)\to\ell^2(X,\deg)$ ein Operator mit Matrix $p:X\times X\to [0,\infty)$ gegeben durch

$$p(x,y) = \frac{b(x,y)}{\deg(x)}$$

d.h.

$$Pf(x) = \sum_{y \in X} p(x, y) f(y).$$

Sei weiterhin $p_n: X \times X \to [0, \infty)$ die Matrix der n-ten Potenz $P^n = P \circ \ldots \circ P$ des Operators P. Sei $Y = (Y_n)$ die Markovkette die gegeben ist durch die Übergangswahrscheinlichkeiten

$$\mathbb{P}(Y_{n+1} = y \mid Y_n = x) = p(x, y), \quad x, y \in X.$$

Weiterhin sei $L = L_{b,c,\deg}$ der zu (b,c) über (X,\deg) gehörige Operator und $\lambda_0 = \inf \sigma(L)$ der kleinste Eigenwert. Für einen linearen Operator auf $\ell^2(X,m)$ sei $||A|| = \sup_{\|f\|=1} ||Af||$ die Operatornorm.

(1) Sei der Graph zusammenhängend. Zeigen Sie, dass $\lambda_0 = 0$ dann und nur dann wenn für die Operatornorm von P gilt ||P|| = 1. Zeigen sie weiterhin, falls ||P|| < 1, dann

$$\lim_{\alpha \downarrow 0} (L + \alpha)^{-1} f = \sum_{n=0}^{\infty} P^n f,$$

für alle $f \in \ell^2(X, \deg)$. (Tipp: Teleskopsumme)

- (2) Zeigen Sie, dass die Gleichung in Aufgabe (1) auch für ||P|| = 1 mit $f \ge 0$ gilt, wobei allerdings beide Seiten der Gleichung in diesem Fall $+\infty$ sind.
- (3) Zeigen Sie, dass für alle $x \in X$ der Grenzwert

$$\rho := \lim_{n \to \infty} \|P^n\|^{1/n}$$

existiert.

(4) Sei

$$\rho_{x,y} = \limsup_{n \to \infty} p_n(x,y)^{1/n}$$

für $x,y\in X$ für einen zusammenhängenden Graphen. Zeigen Sie, dass für alle $x,y,x',y'\in X$ gilt

$$\rho_{x,y} = \rho_{x',y'} = \rho = 1 - \lambda_0.$$