

Universität Potsdam

Besprechung der Lösungen: Donnerstag, 22.06.17, 8:15 Uhr Dr. M. Gerlach Sommersemester 2017

Übungen Topologische (Vektor-)Räume

Blatt 8

34. Es sei X ein normierter \mathbb{K} -Vektorraum und $Y\subseteq X$ ein abgeschlossener Untervektorraum. Zeigen Sie, dass durch

$$||[x]|| := \inf\{||z|| : z \in [x]\}$$

eine Norm auf X/Y definiert wird, welche die Quotiententopologie erzeugt.

- **35.** Geben Sie falls möglich jeweils eine Metrik d auf \mathbb{R} an, welche die euklidische Topologie erzeugt, so dass d vollständig/nicht vollständig und gleichzeitig translationsinvariant/nicht translationsinvariant ist. Geben Sie andernfalls eine Begründing an, weshalb eine solche Metrik nicht exisiert.
- **36.** Es sei X ein topologischer \mathbb{K} -Vektorraum. Zeigen Sie, dass für beschränkte Teilmengen $A, B \subseteq X$ auch die Mengen A + B und $A \cup B$ beschränkt sind. Zeigen Sie außerdem, dass die Menge $\{x_n : n \in \mathbb{N}\}$ einer jeden Cauchyfolge $(x_n) \subseteq X$ beschränkt ist. Gilt entsprechendes auch für die Glieder eines Cauchy-Netzes?
- 37. Wir betrachten den \mathbb{R} -Vektorraum $C(\mathbb{R})$ aller reellwertigen stetigen Funktionen. Zeigen Sie, dass

$$|f| \coloneqq \sup_{t \in \mathbb{R}} \frac{|f(t)|}{1 + |f(t)|}$$

eine Pseudonorm auf $C(\mathbb{R})$ definiert. Entscheiden Sie, ob die Metrik $d(f,g) \coloneqq |f-g|$ den Raum $C(\mathbb{R})$ zu einem topologischen Vektorraum macht.