

Universität Potsdam

Besprechung der Lösungen: Donnerstag, 13.07.17, 8:15 Uhr Dr. M. Gerlach Sommersemester 2017

Übungen Topologische (Vektor-)Räume

Blatt 11

46. Beweisen Sie folgenden "Satz von Mazur": Sei X ein normierter Vektorraum und $(x_n) \subseteq X$ eine Folge, die in der schwachen Topologie gegen $x \in X$ konvergiert. Dann gibt es eine Folge von Konvexkombinationen

$$y_n := \sum_{k=1}^{N_n} \lambda_k^n x_k^n$$

für $N_n \in \mathbb{N}$, $\lambda_k^n \ge 0$ mit $\sum_{k=1}^{N_n} \lambda_k^n = 1$ und $x_k^n \in \{x_j : j \in \mathbb{N}\}$, so dass $\lim y_n = x$ in Norm.

- 47. Wir betrachten das Paar $\langle \mathbb{R}^2, \mathbb{R}^2 \rangle$ mit der kanonischen Dualität. Bestimmen und zeichnen Sie jeweils die (absolute) Polare und (absolute) Bipolare folgender Mengen $M \subseteq \mathbb{R}^2$:
 - (a) $M = \{(x_1, 0) : x_1 \in \mathbb{R}\}$
 - (b) $M = \{x \in \mathbb{R}^2 : ||x||_2 = 1\}$
 - (c) $M = \{(1,1), (1,-1)\}$
 - (d) $M = \{(-1, -1), (1, 1), (-1, 1), (1, -1)\}$
- **48.** Es sei $\langle X, Y \rangle$ ein duales Paar und $K, L \subseteq X$ nicht-leere, konvexe, disjunkte und $\sigma(X, Y)$ -kompakte Mengen. Ferner sei $Z \subseteq Y$ ein $\sigma(Y, X)$ -dichter Unterraum, $y_0 \in Y \setminus Z$ und $x_0 \in X$ mit $\langle y_0, x_0 \rangle = 1$. Zeigen Sie:
 - (a) Es gibt ein $z \in \mathbb{Z}$, das die Mengen K und L strikt trennt.
 - (b) Es gibt kein $z \in \mathbb{Z}$, das die abgeschlossene konvexe Menge $A := \ker y_0$ von der Menge $\{x_0\}$ strikt trennt.
- **49.** Es sei $\langle X, Y \rangle$ ein duales Paar. Für eine Menge $M \subseteq X$ heißt

$$M^{\perp} := \{ y \in Y : \langle x, y \rangle = 0 \text{ für alle } x \in M \}$$

der Annihilator der Menge M. Zeigen Sie:

- (a) Für $M \subseteq X$ ist $M^{\perp} = (\operatorname{span} M)^{\circ}$.
- (b) Ist $M \subseteq X$ ein $\sigma(X, Y)$ -abgeschlossener Unterraum, so ist $M^{\perp \perp} = M$.