Schrödinger operators over dynamical systems

Winter semester 2020

Dr. S. Beckus

Sheet 9

Due on Thursday 01/21/2021 at 10.00 am

Exercise 1. Let $T := \overline{N} = \mathbb{N} \cup \{\infty\}$ be the one point compactification of \mathbb{N} and $H := \ell^2(\mathbb{N})$. Show the following.

(a) There are $A_t \in \mathcal{L}(H)$ self-adjoint for $t \in T$ such that

$$N_p: T \to \mathbb{R}, N_p(t) := \|p(A_t)\|,$$

is continuous for all $p(z) := p_1 z + p_0$ with $p_1, p_0 \in \mathbb{R}$ but $t \mapsto \sigma(A_t)$ is not continuous. (b) There are $A_t \in \mathcal{L}(h)$ self-adjoint for $t \in T$ such that

$$N_p: T \to \mathbb{R}, N_p(t) := \|p(A_t)\|,$$

is continuous for all $p(z) := p_2 z^2 + p_0$ with $p_2, p_0 \in \mathbb{R}$ but $t \mapsto \sigma(A_t)$ is not continuous. (c) There are $A_t \in \mathcal{L}(h)$ self-adjoint for $t \in T$ such that

$$N_p: T \to \mathbb{R}, N_p(t) := \|p(A_t)\|,$$

is continuous for all $p(z) := p_2 z^2 + p_1 z$ with $p_2, p_1 \in \mathbb{R}$ but $t \mapsto \sigma(A_t)$ is not continuous.

Exercise 2 (4 points). Let G be countable and $g, h \in G$. Prove that the left-shift

 $L_g: \ell^2(G) \to \ell^2(G), \quad (L_g \psi)(h) := \psi(g^{-1}h),$

and the right-shift

$$R_g: \ell^2(G) \to \ell^2(G), \quad (R_g \psi)(h) := \psi(hg),$$

are unitary linear bounded operators satisfying

(a) $L_g^* = L_{g^{-1}}$ and $R_g^* = R_{g^{-1}}$, (b) $||L_g|| = 1 = ||R_g||$, (c) $L_g L_h = L_{gh}$ and $R_g R_h = R_{gh}$, (d) $L_g R_h = R_h L_g$.

Exercise 3. A function $t : \mathcal{A}^{\mathbb{Z}^d} \to \mathbb{C}$ is called *(strongly) pattern equivariant with parameter* $M_t \in \mathbb{N}$ if $t(\omega) = t(\rho)$ holds whenever $\omega|_{Q_{M_t}} = \rho|_{Q_{M_t}}$. Prove that the following statements are equivalent.

- (i) $t: \mathcal{A}^{\mathbb{Z}^d} \to \mathbb{C}$ is pattern equivariant.
- (ii) t is continuous and takes only finitely many values.

Exercise 4 (4 points). Let *E* be a Banach space and $A \in \mathcal{L}(E)$. Consider a sequence $(x_n)_{n \in \mathbb{N}} \subseteq \rho(A)$ such that $x_n \to x \in \mathbb{C}$. Prove the following statements.

- (a) If $\sup_{n \in \mathbb{N}} ||(A x_n)^{-1}||$ is finite then $x \in \rho(A)$.
- (b) If there are $S_n, T_n \in \mathcal{L}(E), n \in \mathbb{N}$, such that

$$(A - x_n)S_n = I + T_n,$$
 $\sup_{n \in \mathbb{N}} ||S_n|| < \infty$ and $\sup_{n \in \mathbb{N}} ||T_n|| < 1,$

then $x \in \rho(A)$.