Schrödinger operators over dynamical systems

Sheet 8

Due on Thursday $01 / 14 / 2020$ at 10.00 am

Exercise 1 (4 points). Let S be a substitution over a finite alphabet \mathcal{A} with $\sharp \mathcal{A} \geq 2$. Define $S: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}}$ by

$$
S(\omega)=\ldots S(\omega(-3)) S(\omega(-2)) S(\omega(-1)) \mid S(\omega(0)) S(\omega(1)) S(\omega(2)) \ldots
$$

(a) Prove that $S: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}}$ is a continuous map.
(b) Suppose S is primitive. Prove that there is always a $k \in \mathbb{N}$ and an $\omega \in \mathcal{A}^{\mathbb{Z}}$ such that $S^{k}(\omega)=\omega$ and $\left.\omega\right|_{\{-1,0\}}$ is legal.
Hint: Compare exercise on page 62 in the lecture.

Exercise 2 (4 points). Let $\mathcal{A}:=\{a, b, c, d\}$ and consider the Golay-Rudin-Shapiro substitution

$$
S(a):=a b, \quad S(b):=a c, \quad S(c):=d b, \quad S(d)=d c .
$$

- Prove that S is is primitive.
- Prove that $\Omega(S)$ is strongly aperiodic.
- Find a periodic $\omega \in \mathcal{A}^{\mathbb{Z}}$ such that

$$
\lim _{n \rightarrow \infty} \overline{\operatorname{Orb}\left(S^{n}(\omega)\right)}=\Omega(S)
$$

Exercise 3. Let H be a Hilbert space, T be a topological space and $A_{t} \in \mathcal{L}(H)$ be self-adjoint for $t \in T$. We say $\left(A_{t}\right)$ is continuous in the strong operator topology if

$$
t \mapsto A_{t} \psi \in H
$$

is continuous for all $\psi \in h$. Let $\left(A_{t}\right)$ be continuous in the strong operator topology such that $\sup _{t \in T}\left\|A_{t}\right\|<\infty$. Prove the following assertions.
(a) The $\operatorname{map} N: T \rightarrow[0, \infty), N(t):=\left\|A_{t}\right\|$ is lower semi-continuous.
(b) The family $\left(p\left(A_{t}\right)\right)_{t \in T}$ is continuous in the strong operator topology for all polynomials $p(z):=a z^{2}+b z+c$ with $a, b, c \in \mathbb{C}$.
(c) The map $N_{p}: T \rightarrow[0, \infty), N_{p}(t):=\left\|p\left(A_{t}\right)\right\|$ is lower semi-continuous for all polynomials $p(z):=a z^{2}+b z+c$ with $a, b, c \in \mathbb{C}$.

Exercise 4 (4 points). Let \mathcal{A} be an finite set (alphabet) and $V: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathbb{R}$ be continuous. For $w \in \mathcal{A}^{\mathbb{Z}}$, define the operator $H_{w} \in \mathcal{L}\left(\ell^{2}(\mathbb{Z})\right)$ by

$$
\left(H_{\omega} \psi\right)(n):=\psi(n-1)+\psi(n+1)+V\left(n^{-1} \omega\right) \psi(n) .
$$

Prove the following statements.
(a) H_{ω} is a linear, self-adjoint operator with $\sup _{\omega \in \mathcal{A}^{z}}\left\|H_{\omega}\right\|<\infty$.
(b) The map $\omega \mapsto H_{\omega}$ is strongly continuous, namely

$$
\left.\lim _{\rho \rightarrow \omega} \|\left(H_{\omega}-H_{\rho}\right) \psi\right) \|=0
$$

for all $\psi \in \ell^{2}(\mathbb{Z})$.
(c) For all $n \in \mathbb{Z}$ and $\omega \in \mathcal{A}^{\mathbb{Z}}$, the equality

$$
H_{n \omega}=L_{n} H_{\omega} L_{-n}
$$

holds where

$$
L_{n}: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z}), \quad\left(L_{n} \psi\right)(m):=\psi(-n+m)
$$

Bonus exercise 1 (1 point). Let (X, G) be a dynamical system and $t: X \rightarrow \mathbb{C}$ be continuous. For each $x \in X$, compute the spectrum $\sigma(\widehat{t}(x))$ of the operator $\widehat{t}(x) \in \mathcal{L}\left(\ell^{2}(G)\right)$ defined by

$$
(\widehat{t}(x) \psi)(g):=t\left(g^{-1} x\right) \psi(g)
$$

for $\psi \in \ell^{2}(G)$ and $g \in G$.

