Schrödinger operators over dynamical systems

Winter semester 2020

Dr. S. Beckus

Sheet 6

Due on Thursday 12/17/2020 at 10.00 am

Exercise 1 (4 points). Let $\mathcal{A} := \{a, b\}$ and $\Omega := \overline{Orb(\omega)} \subset \mathcal{A}^{\mathbb{Z}}$ be the orbit closure of $\omega \in \mathcal{A}^{\mathbb{Z}}$ defined by

$$\omega(n) := \begin{cases} a, & n \le 0, \\ b, & n \ge 1, \end{cases} \qquad n \in \mathbb{Z}.$$

- (a) Prove that Ω is an isolated point in \mathcal{J} .
- (b) Show that there exists a sequence periodic $\omega_n \in \mathcal{A}^{\mathbb{Z}}$ such that (ω_n) converges to ω in $\mathcal{A}^{\mathbb{Z}}$.
- (c) Is Ω weakly aperiodic or strongly aperiodic?

Exercise 2 (4 points). Let (X, G) be a dynamical system. Prove that if $E \subseteq C(X)$ is dense and $\mu_n(f) \to \mu(f)$ for all $f \in E$, then $\mu_n \rightharpoonup \mu$.

Exercise 3 (4 points). Consider the dynamical system $(\mathcal{A}^{\mathbb{Z}}, \mathbb{Z})$ over a finite alphabet \mathcal{A} . For $k \in \mathbb{N}$ and $u \in \mathcal{A}^{2k+1}$, define

$$O(u) := \left\{ \omega \in \mathcal{A}^{\mathbb{Z}} \, \big| \, \omega|_{\{-k,\dots,k\}} = u \right\},\,$$

which is a basis for the topology on $\mathcal{A}^{\mathbb{Z}}$. Let $\mu_n, \mu \in \mathcal{M}^1(\mathcal{A}^{\mathbb{Z}}, \mathbb{Z}), n \in \mathbb{N}$. Prove that the following assertions are equivalent.

- (i) $\mu_n \rightharpoonup \mu$ in the vague topology,
- (ii) $\mu_n(O(u)) \to \mu(O(u))$ for all $u \in \mathcal{A}^{2k+1}$ and $k \in \mathbb{N}$.

Hint: Use the Theorem of Stone-Weierstrass.

Exercise 4 (4 points). Let $\mathcal{A} := \{a, b\}$ and $\omega, \rho \in \mathcal{A}^{\mathbb{Z}}$ be defined by

$$\omega(n) := \begin{cases} a, & n \le 0, \\ b, & n \ge 1, \end{cases} \qquad \qquad \rho(n) := \begin{cases} b, & n \le 0, \\ a, & n \ge 1, \end{cases} \qquad \qquad n \in \mathbb{Z},$$

Consider the subshift $\Omega := \overline{Orb(\omega)} \cup \overline{Orb(\rho)}$.

- (a) Determine the set $\mathcal{M}^1(\Omega, \mathbb{Z})$.
- (b) Let $\mu \in \mathcal{M}^1(\Omega, \mathbb{Z})$. Construct a sequence of periodic $\Omega_n \in \mathcal{J}$ with unique \mathbb{Z} -invariant probability measure μ_n such that
 - $\Omega_n \to \Omega$ in \mathcal{J} ,
 - $\mu_n \rightharpoonup \mu$.

Hint: (a) Figure out on which set any $\mu \in \mathcal{M}^1(\Omega, \mathbb{Z})$ can be supported. (b) You can use the following statement: For every $\lambda \in [0, 1]$, there are $p_n \leq q_n \in \mathbb{N}$ for all $n \in \mathbb{N}$ such that

- $\begin{array}{l} \bullet \ \frac{p_n}{q_n} \to \lambda, \\ \bullet \ p_n \to \infty, \end{array}$

•
$$q_n - p_n \to \infty$$
,

where $\frac{p_n}{q_n}$ is a reduced fractions.