Schrödinger operators over dynamical systems

Winter semester 2020

Dr. S. Beckus

Sheet 3

Due on Thursday 11/26/2020 at 10.00 am

Exercise 1 (4 points). Let G be a countable group. A dynamical system (Y, G) is called periodic if Y is minimal and finite. Prove that every periodic dynamical system (Y, G) admits exactly one invariant probability measure, namely $\mathcal{M}^1(Y, G) = \{\mu\}$.

Exercise 2 (4 points). Let G be a countable group. Let (X, G) be a dynamical system and $Y \in \mathcal{J}$. For $\mu \in \mathcal{M}^1(Y, G)$, define $\mu_X \in \mathcal{M}(X)$ by

$$\mu_X(A) := \mu(Y \cap A)$$

for all measurable $A \subseteq X$. Prove the following assertions.

- (a) $\mu_X \in \mathcal{M}^1(X, G)$ is an invariant probability measure.
- (b) The map $\iota: \mathcal{M}^1(Y, G) \to \mathcal{M}^1(X, G), \ \mu \mapsto \mu_X$, is a continuous injective map.
- (c) $\iota(\mathcal{M}^1(Y,G)) \subseteq \mathcal{M}^1(X,G)$ is a compact and convex subset.

Exercise 3 (4 points). Let G be a countable group and $F_n \subseteq G$, $n \in \mathbb{N}$, be compact. Prove that (F_n) is a Følner sequence of the countable group G if and only if

$$\lim_{n \to \infty} \frac{\#(F_n \cap (KF_n))}{\#F_n} = 1$$

for all compact $K \subseteq G$.

Exercise 4 (4 points). Let X be a compact metric space and \mathscr{B} be the Borel σ -algebra. Consider a finite measure μ on \mathscr{B} . Prove that

$$\mathscr{A} := \{ A \in \mathscr{B} \text{ regular w.r.t. } \mu \}$$

is a $\sigma\text{-algebra}.$

<u>Hint:</u> You can use that if $A_j \in \mathscr{A}$ with $A_1 \subset A_2 \subset \ldots$, then $\mu(\bigcup_{j \in \mathbb{N}} A_j) = \lim_{n \to \infty} \mu(A_n)$.

Bonus exercise 1 (1 point). Let μ be a finite Borel measure on a compact space X. Consider the Banach space C(X) equipped with the uniform norm $\|\cdot\|_{\infty}$ defined by $\|f\|_{\infty} := \sup_{x \in X} |f(x)|$. Show that $\varphi(f) := \int_X f \, d\mu$ defines a linear functional on C(X).

Bonus exercise 2 (1 point). Let \mathcal{A} be a finite set. Prove or disprove the following assertion: The full shift $\mathcal{A}^{\mathbb{Z}}$ is topological transitive.

Bonus exercise 3 (1 point). Let \mathcal{A} be a finite set. Prove or disprove the following assertion: The full shift $\mathcal{A}^{\mathbb{Z}}$ is minimal.