Schrödinger operators over dynamical systems

Winter semester 2020

Dr. S. Beckus

Sheet 2

Due on Thursday 11/19/2020 at 10.00 am

Exercise 1 (4 points). Let (X, d) be a compact and complete metric space. Prove that $\mathcal{K}(X)$ equipped with the Hausdorff metric

$$\delta_H(F,K) := \max\left\{\sup_{x \in F} \inf_{y \in K} d(x,y), \sup_{y \in K} \inf_{x \in F} d(x,y)\right\}$$

is a totally bounded metric space.

<u>Hint:</u> You can assume that $(\mathcal{K}(X), \delta_H)$ is a metric space.

Exercise 2 (4 points). Let X, Y be locally compact spaces. Prove the following statements.

- (a) If $f: X \to Y$ is continuous, then the map $\tilde{f}: \mathcal{K}(X) \to \mathcal{K}(Y), K \mapsto f(K)$, is continuous in the Vietoris topology.
- (b) The maps sup : $\mathcal{K}(\mathbb{R}) \to \mathbb{R}$, $K \mapsto \sup K$ and $\inf : \mathcal{K}(\mathbb{R}) \to \mathbb{R}$, $K \mapsto \inf K$ are continuous in the Vietoris topology on $\mathcal{K}(X)$.

Exercise 3 (4 points). Consider the dynamical system $(\mathcal{A}^{\mathbb{Z}}, \mathbb{Z})$ for $\mathcal{A} := \{a, b\}$ and $\omega \in \mathcal{A}^{\mathbb{Z}}$ is defined by

$$\omega(n) := \begin{cases} a, & n \neq 0, \\ b, & n = 0, \end{cases} \qquad n \in \mathbb{Z}.$$

Is the corresponding orbit closure $\Omega := \overline{Orb(\omega)}$ minimal? In order to check this, compute the set $\overline{Orb(\omega)}$. If Ω is not minimal, compute all its minimal components.

Exercise 4 (4 points). Let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be two Banach spaces over \mathbb{C} and $T : E \to F$ be linear (i.e. $T(\lambda x + y) = \lambda T(x) + T(y)$ for all $x, y \in E$ and $\lambda \in \mathbb{C}$). Prove that the following statements are equivalent.

- (i) T is continuous,
- (ii) T is continuous at 0,
- (iii) there is an C > 0 such that $||T(x)|| \le C ||x||$ holds for all $x \in E$,
- (iv) T is uniformly continuous.

Bonus exercise 1 (1 point). Let (X, G) be a dynamical system. Prove that if $Y, Z \in \mathcal{J}$ are minimal, then either $Y \cap Z = \emptyset$ or Y = Z.

Bonus exercise 2 (1 point). Show that the Vietoris topology and Chabauty-Fell topology are different on $\mathcal{K}(\mathbb{R})$.

<u>Hint:</u> Consider the sequence $A_n := [0, 1] \cup \{n\} \in \mathcal{K}(\mathbb{R})$