Schrödinger operators over dynamical systems

Winter semester 2020

Dr. S. Beckus

Sheet 11
Due on Thursday 02/04/2021 at 10.00 am

Exercise 1 (4 points). For $V \in C\left(\mathcal{A}^{\mathbb{Z}}\right)$ is real-valued, consider the Hamiltonian H over $\left(\mathcal{A}^{\mathbb{Z}}, \mathbb{Z}\right)$ is given by

$$
\left(H_{\omega} \psi\right)(n)=\psi(n+1)+\psi(n-1)+V\left(n^{-1} \omega\right) \psi(n), \quad \omega \in \mathcal{A}^{\mathbb{Z}} .
$$

Specifically, $\mathcal{R}=\{0,1\}$ with $t_{1} \equiv 1$ and $t_{0}:=\frac{1}{2} V$.
Let $p \in \mathcal{A}^{N+1}$ be a finite word and $\omega_{p}:=p^{\infty}$. Prove that

$$
\sigma\left(H_{\Omega}\right)=\sigma\left(H_{\omega_{p}}\right)=\overline{\bigcup_{x \in\left[0, \frac{2 \pi}{N+1}\right)} \sigma\left(A\left(\omega_{p}, x\right)\right)}
$$

holds where $A\left(\omega_{p}, x\right)$ is an $(N+1) \times(N+1)$ matrix given by

$$
A\left(\omega_{p}, x\right)=\left(\begin{array}{cccccc}
V\left(\omega_{p}\right) & 1 & 0 & \ldots & 0 & e^{i(N+1) x} \\
1 & V\left(1^{-1} \omega_{p}\right) & 1 & \ddots & 0 & 0 \\
0 & 1 & \ddots & & & \vdots \\
\vdots & \ddots & & & & \vdots \\
\vdots & & & & & 0 \\
0 & \ldots & & & V\left((N-1)^{-1} \omega_{p}\right) & 1 \\
e^{-i(N+1) x} & 0 & \ldots & 0 & 1 & V\left(N^{-1} \omega_{p}\right)
\end{array}\right)
$$

Exercise 2 (4 points). Let $p \in \mathcal{A}^{N+1}$ be a finite word and $\omega_{p}:=p^{\infty}$. Consider the matrices $A\left(\omega_{p}, \theta\right)$ for $\theta \in[0,2 \pi)$ defined by

$$
A\left(\omega_{p}, \theta\right)=\left(\begin{array}{cccccc}
V\left(\omega_{p}\right) & 1 & 0 & \ldots & 0 & e^{i \theta} \\
1 & V\left(1^{-1} \omega_{p}\right) & 1 & \ddots & 0 & 0 \\
0 & 1 & \ddots & & & \vdots \\
\vdots & \ddots & & & & \vdots \\
\vdots & & & & & 0 \\
0 & \ldots & & & V\left((N-1)^{-1} \omega_{p}\right) & 1 \\
e^{-i \theta} & 0 & \ldots & 0 & 1 & V\left(N^{-1} \omega_{p}\right)
\end{array}\right) .
$$

Prove that there is a polynomial $P(\lambda)=\sum_{j=0}^{N+1} a_{j} \lambda^{j}$ such that each a_{j} is independent of θ and the following holds.
(a) The characteristic polynomial $\chi_{\theta}(\lambda):=\operatorname{det}\left(\lambda-A\left(\omega_{p}, \theta\right)\right)$ satisfies

$$
\chi_{\theta}(\lambda)=P(\lambda)-2 \cos (\theta) .
$$

(b) The equality $\sigma\left(H_{\omega_{p}}\right)=\{\lambda \in \mathbb{R}| | P(\lambda) \mid \leq 2\}$ holds.

Exercise 3 (4 points). Let $p \in \mathcal{A}^{N+1}$ be a finite word and $\omega_{p}:=p^{\infty}$ with $p \in \mathcal{A}^{N+1}$. Consider the matrices $A\left(\omega_{p}, \theta\right)$ for $\theta \in[0,2 \pi)$ defined in the previous Exercise 2. Prove the following statements.
(a) For $\theta \in[0, \pi]$, let $\lambda_{0}^{\theta} \leq \lambda_{1}^{\theta} \leq \ldots \leq \lambda_{N}^{\theta}$ be the eigenvalues of $A\left(\omega_{p}, \theta\right)$. Prove that

- if N is even, then

$$
\lambda_{N}^{0}>\lambda_{N}^{\theta}>\lambda_{N}^{\pi} \geq \lambda_{N-1}^{\pi}>\lambda_{N-1}^{\theta}>\lambda_{N-1}^{0} \geq \lambda_{N-2}^{0}>\lambda_{N-1}^{\theta}>\ldots \geq \lambda_{0}^{0}>\lambda_{0}^{\theta}>\lambda_{0}^{\pi}
$$

- if N is odd, then

$$
\lambda_{N}^{0}>\lambda_{N}^{\theta}>\lambda_{N}^{\pi} \geq \lambda_{N-1}^{\pi}>\lambda_{N-1}^{\theta}>\lambda_{N-1}^{0} \geq \lambda_{N-2}^{0}>\lambda_{N-1}^{\theta}>\ldots \geq \lambda_{0}^{\pi}>\lambda_{0}^{\theta}>\lambda_{0}^{0}
$$

- We have

$$
\sigma\left(H_{\omega_{p}}\right)=\bigcup_{j=0}^{N} I_{j}
$$

where the intervals $I_{j}:=\left[\lambda_{j}^{0}, \lambda_{j}^{\pi}\right]$ (where we use the convention that $[a, b]=[b, a]$ if $b<a)$ can touch at most at their boundaries.

Exercise 4 (4 points). Let $\mathcal{A}:=\{a, b\}, \omega_{n}:=\left(b a^{2 n+1}\right)^{\infty} \in \mathcal{A}^{\mathbb{Z}}$ and

$$
\omega(n):=\left\{\begin{array}{ll}
a, & n \neq 0, \\
b, & n=0,
\end{array} \quad n \in \mathbb{Z}\right.
$$

Let H be the Hamiltonian defined by

$$
\left(H_{\rho} \psi\right)(n)=\psi(n+1)+\psi(n-1)+V\left(n^{-1} \rho\right) \psi(n), \quad \rho \in \mathcal{A}^{\mathbb{Z}}
$$

where

$$
V(\omega):= \begin{cases}0, & \omega(0)=a \\ 2, & \omega(0)=b\end{cases}
$$

(a) Compute the distance of the dynamical systems $\overline{\operatorname{Orb}(\omega)}$ and $\operatorname{Orb}\left(\omega_{n}\right)$ with respect to the Hausdorff metric δ_{H} defined in the lecture.
(b) Prove that $d_{H}\left(\sigma\left(H_{\omega_{n}}\right), \sigma\left(H_{\omega}\right)\right)$ tends to zero if $n \rightarrow \infty$ by providing a suitable upper bound for the Hausdorff distance of the spectra.

Hint: According to Sheet 7, Exercise 3, we have $\operatorname{Orb}\left(\omega_{n}\right) \rightarrow \overline{\operatorname{Orb}(\omega)}$.

Bonus exercise 1 (2 points). Let S be the Fibonacci substitution defined by $S(a):=a b$ and $S(b):=a$ for $\mathcal{A}:=\{a, b\}$. Let $V: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathbb{R}$ be defined by

$$
V(\omega):= \begin{cases}0, & \omega(0)=b \\ 4, & \omega(0)=a\end{cases}
$$

Hamiltonian H over $\left(\mathcal{A}^{\mathbb{Z}}, \mathbb{Z}\right)$ is given by

$$
\left(H_{\omega} \psi\right)(n)=\psi(n+1)+\psi(n-1)+V\left(n^{-1} \omega\right) \psi(n), \quad \omega \in \mathcal{A}^{\mathbb{Z}}
$$

Compute numerically (with your favorite computer tool) the spectrum of $H_{\omega_{i}}$ for $i=0,1,2,3,4$ where $\omega_{i}:=S^{i}\left(b^{\infty}\right)$ and draw the spectra into the following plot:

