## Schrödinger operators over dynamical systems

Winter semester 2020

## Dr. S. Beckus

## Sheet 11

## Due on Thursday 02/04/2021 at 10.00 am

**Exercise 1** (4 points). For  $V \in C(\mathcal{A}^{\mathbb{Z}})$  is real-valued, consider the Hamiltonian H over  $(\mathcal{A}^{\mathbb{Z}}, \mathbb{Z})$  is given by

$$(H_{\omega}\psi)(n) = \psi(n+1) + \psi(n-1) + V(n^{-1}\omega)\psi(n), \qquad \omega \in \mathcal{A}^{\mathbb{Z}}$$

Specifically, 
$$\mathcal{R} = \{0, 1\}$$
 with  $t_1 \equiv 1$  and  $t_0 := \frac{1}{2}V$ 

Let  $p \in \mathcal{A}^{N+1}$  be a finite word and  $\omega_p := p^{\infty}$ . Prove that

$$\sigma(H_{\Omega}) = \sigma(H_{\omega_p}) = \overline{\bigcup_{x \in [0, \frac{2\pi}{N+1})} \sigma(A(\omega_p, x))}$$

holds where  $A(\omega_p, x)$  is an  $(N + 1) \times (N + 1)$  matrix given by

$$A(\omega_p, x) = \begin{pmatrix} V(\omega_p) & 1 & 0 & \dots & 0 & e^{i(N+1)x} \\ 1 & V(1^{-1}\omega_p) & 1 & \ddots & 0 & 0 \\ 0 & 1 & \ddots & & & \vdots \\ \vdots & \ddots & & & & \vdots \\ \vdots & \ddots & & & & \vdots \\ 0 & \dots & V((N-1)^{-1}\omega_p) & 1 \\ e^{-i(N+1)x} & 0 & \dots & 0 & 1 & V(N^{-1}\omega_p) \end{pmatrix}$$

**Exercise 2** (4 points). Let  $p \in \mathcal{A}^{N+1}$  be a finite word and  $\omega_p := p^{\infty}$ . Consider the matrices  $A(\omega_p, \theta)$  for  $\theta \in [0, 2\pi)$  defined by

$$A(\omega_p, \theta) = \begin{pmatrix} V(\omega_p) & 1 & 0 & \dots & 0 & e^{i\theta} \\ 1 & V(1^{-1}\omega_p) & 1 & \ddots & 0 & 0 \\ 0 & 1 & \ddots & & & \vdots \\ \vdots & \ddots & & & & \vdots \\ \vdots & \ddots & & & & \vdots \\ 0 & \dots & V((N-1)^{-1}\omega_p) & 1 \\ e^{-i\theta} & 0 & \dots & 0 & 1 & V(N^{-1}\omega_p) \end{pmatrix}$$

Prove that there is a polynomial  $P(\lambda) = \sum_{j=0}^{N+1} a_j \lambda^j$  such that each  $a_j$  is independent of  $\theta$  and the following holds.

(a) The characteristic polynomial  $\chi_{\theta}(\lambda) := det (\lambda - A(\omega_p, \theta))$  satisfies

$$\chi_{\theta}(\lambda) = P(\lambda) - 2\cos(\theta).$$

(b) The equality  $\sigma(H_{\omega_p}) = \{\lambda \in \mathbb{R} \mid |P(\lambda)| \le 2\}$  holds.

**Exercise 3** (4 points). Let  $p \in \mathcal{A}^{N+1}$  be a finite word and  $\omega_p := p^{\infty}$  with  $p \in \mathcal{A}^{N+1}$ . Consider the matrices  $A(\omega_p, \theta)$  for  $\theta \in [0, 2\pi)$  defined in the previous Exercise 2. Prove the following statements.

(a) For  $\theta \in [0, \pi]$ , let  $\lambda_0^{\theta} \leq \lambda_1^{\theta} \leq \ldots \leq \lambda_N^{\theta}$  be the eigenvalues of  $A(\omega_p, \theta)$ . Prove that • if N is even, then

 $\lambda_N^0 > \lambda_N^\theta > \lambda_N^\pi \ge \lambda_{N-1}^\pi > \lambda_{N-1}^\theta > \lambda_{N-1}^0 \ge \lambda_{N-2}^0 > \lambda_{N-1}^\theta > \ldots \ge \lambda_0^0 > \lambda_0^\theta > \lambda_0^\pi,$ 

• if N is odd, then

$$\lambda_N^0 > \lambda_N^\theta > \lambda_N^\pi \ge \lambda_{N-1}^\pi > \lambda_{N-1}^\theta > \lambda_{N-1}^0 \ge \lambda_{N-2}^0 > \lambda_{N-1}^\theta > \dots \ge \lambda_0^\pi > \lambda_0^\theta > \lambda_0^0$$

• We have

$$\sigma(H_{\omega_p}) = \bigcup_{j=0}^N I_j$$

where the intervals  $I_j := [\lambda_j^0, \lambda_j^{\pi}]$  (where we use the convention that [a, b] = [b, a] if b < a) can touch at most at their boundaries.

**Exercise 4** (4 points). Let  $\mathcal{A} := \{a, b\}, \omega_n := (ba^{2n+1})^{\infty} \in \mathcal{A}^{\mathbb{Z}}$  and

$$\omega(n) := \begin{cases} a, & n \neq 0, \\ b, & n = 0, \end{cases} \quad n \in \mathbb{Z}.$$

Let H be the Hamiltonian defined by

(

$$H_{\rho}\psi)(n) = \psi(n+1) + \psi(n-1) + V(n^{-1}\rho)\psi(n), \qquad \rho \in \mathcal{A}^{\mathbb{Z}},$$

where

$$V(\omega) := \begin{cases} 0, & \omega(0) = a, \\ 2, & \omega(0) = b. \end{cases}$$

- (a) Compute the distance of the dynamical systems  $Orb(\omega)$  and  $Orb(\omega_n)$  with respect to the Hausdorff metric  $\delta_H$  defined in the lecture.
- (b) Prove that  $d_H(\sigma(H_{\omega_n}), \sigma(H_{\omega}))$  tends to zero if  $n \to \infty$  by providing a suitable upper bound for the Hausdorff distance of the spectra.

<u>Hint:</u> According to Sheet 7, Exercise 3, we have  $Orb(\omega_n) \to \overline{Orb(\omega)}$ .

**Bonus exercise 1** (2 points). Let S be the Fibonacci substitution defined by S(a) := ab and S(b) := a for  $\mathcal{A} := \{a, b\}$ . Let  $V : \mathcal{A}^{\mathbb{Z}} \to \mathbb{R}$  be defined by

$$V(\omega) := \begin{cases} 0, & \omega(0) = b, \\ 4, & \omega(0) = a. \end{cases}$$

Hamiltonian H over  $(\mathcal{A}^{\mathbb{Z}}, \mathbb{Z})$  is given by

$$(H_{\omega}\psi)(n) = \psi(n+1) + \psi(n-1) + V(n^{-1}\omega)\psi(n), \qquad \omega \in \mathcal{A}^{\mathbb{Z}}.$$

Compute numerically (with your favorite computer tool) the spectrum of  $H_{\omega_i}$  for i = 0, 1, 2, 3, 4where  $\omega_i := S^i(b^{\infty})$  and draw the spectra into the following plot:

