Schrödinger operators over dynamical systems

Winter semester 2020

Dr. S. Beckus

Sheet 10

Due on Thursday 01/28/2021 at 10.00 am

Exercise 1 (4 points). Let (X, G) be a topological transitive dynamical systems (namely there is an $x \in X$ with $X = \overline{Orb(x)}$). Prove that if a family of operators $A_X = (A_x)_{x \in X}$ is covariant, self-adjoint and strongly continuous, then A_X is also bounded and

$$\sigma(H_X) = \sigma(H_x).$$

Exercise 2. Let (X, G) be a dynamical system with G a discrete countable group. Prove that if (X, G) is minimal, then there is for each $x \in X$, a sequence $(g_m)_{m \in \mathbb{N}} \subseteq G$ such that

- $\lim_{m\to\infty} g_m x = x$ and
- $(g_m)_{m\in\mathbb{N}}$ escapes to infinity, namely for each $K \subseteq G$ compact, there is $m_K \in \mathbb{N}$ such that $g_m \notin K$ for all $m \geq m_K$.

Exercise 3 (4 points). Let $A, B \in \mathcal{L}(E)$ be normal. Prove that

$$d_H(\sigma(A), \sigma(B)) \leq ||A - B|| \leq 2 \max \{||A||, ||B||\}.$$

Exercise 4 (4 points). Let (X, d) be a compact metric space with a probability measure μ . For $d \in \mathbb{N}$, consider the Hilbert space

$$\mathcal{H} := \bigoplus_{k=1}^{d} L^{2}(X,\mu) := \left\{ h \in \prod_{k=1}^{d} L^{2}(X,\mu) \, \middle| \, \sum_{k=1}^{d} \|h_{k}\|_{2,X}^{2} < \infty \right\}$$

of d copies of the L^2 -space $L^2(X,\mu)$ where $\|\cdot\|_{2,X}$ denotes the L^2 -norm in $L^2(X,\mu)$. The inner product of \mathcal{H} is defined $\langle h, f \rangle_{\mathcal{H}} := \sum_{k=1}^d \langle h_k, f_k \rangle_{2,X}$ where $\langle \cdot, \cdot \rangle_{2,X}$ denotes the inner product on $L^2(X,\mu)$.

Let $M \in \mathcal{L}(\mathcal{H})$ be a linear bounded operator defined by

$$(Mf)(x) := M(x)f(x), \qquad f \in \mathcal{H}, x \in X$$

where $M(x) \in \mathcal{L}(\mathbb{C}^d)$ is a self-adjoint (Hermitian) matrix such that $X \ni x \mapsto M(x) \in \mathcal{L}(\mathbb{C}^d)$ is continuous in the operator norm. Prove the following statements.

- (a) $M \in \mathcal{L}(\mathcal{H})$ is self-adjoint.
- (b) The eigenvalues of M(x) depend continuously on x,
- (c) The equality $\sigma(M) = \overline{\bigcup_{x \in X} \sigma(M(x))}$ holds.

<u>Hint:</u> For the inclusion $\bigcup_{x \in X} \sigma(M(x)) \subseteq \sigma(M)$ you can use Weyl's criterion.