Schrödinger operators over dynamical systems

Winter semester 2020

Dr. S. Beckus

Sheet 1

Due on Thursday 11/12/2020 at 10.00 am

Exercise 1 (4 points). Let \mathcal{A} be a finite set equipped with the discrete topology and G be a countable group. Let $K_n \subseteq G, n \in \mathbb{N}$ be finite such that

- $K_n \subsetneq K_{n+1}$ for all $n \in \mathbb{N}$ and
- $\bigcup_{n \in \mathbb{N}} K_n = G.$

Prove the following statements.

(a) The map $d: \mathcal{A}^G \times \mathcal{A}^G \to [0, \infty)$ defined by

$$d(\omega,\rho) := \min\left\{1, \inf\left\{\frac{1}{n} \mid n \in \mathbb{N}, \, \omega|_{K_n} = \rho|_{K_n}\right\}\right\}$$

is an ultra metric on \mathcal{A}^G .

(b) The metric space (\mathcal{A}^G, d) is a totally bounded and complete metric space (and hence compact).

Exercise 2 (4 points). Let \mathcal{A} be a finite set equipped with the discrete topology and G be a countable group. Show that (\mathcal{A}^G, G) is a (topological) dynamical system.

Exercise 3 (4 points). Let $G := \mathbb{C} \times \mathbb{R}$ be equipped with the composition and inverse defined by

$$\begin{split} (v,s)(w,t) &:= (v+w,s+t-\Im(v\cdot\overline{w}))\,,\\ (v,s)^{-1} &:= (-v,-s), \end{split}$$

for $(v, s), (w, t) \in G$. Furthermore, define $\|\cdot\| : G \to [0, \infty)$ by

$$||(v,s)|| := (|v|^4 + 4s^2)^{\frac{1}{4}}.$$

Prove the following assertions

- (a) The set G is a non-abelian group if equipped with the composition and inverse defined before.
- (b) The map $\|\cdot\|: G \to [0,\infty)$ satisfies the following.
 - $\|\cdot\|$ is definite, namely $\|(v,s)\| > 0$ if and only if $(v,s) \neq (0,0)$
 - For all $g \in G$, we have $||g|| = ||g^{-1}||$.
 - $\bullet ~ \| \cdot \|$ satisfies the triangle inequality, namely

$$||gh|| \le ||g|| + ||h||, \quad g, h \in G.$$

Exercise 4 (4 points). Let $G := \mathbb{C} \times \mathbb{R}$ be equipped with the Euclidean topology (i.e. $|(v_1, v_2, s)| := \sqrt{v_1^2 + v_2^2 + s^2}$) composition and inverse defined by

$$(v,s)(w,t) := (v+w,s+t-\Im(v\cdot\overline{w})),$$

 $(v,s)^{-1} := (-v,-s),$

for $(v, s), (w, t) \in G$. Furthermore, define $\|\cdot\| : G \to [0, \infty)$ by

$$||(v,s)|| := (|v|^4 + 4s^2)^{\frac{1}{4}}.$$

Prove the following assertions.

(a) The map $d: G \times G \to [0, \infty)$ defined by

$$d(g,h) := ||g^{-1}h||, \qquad g,h \in G,$$

is a left-invariant metric on G, namely d is a metric and $d(hg_1, hg_2) = d(g_1, g_2)$ holds for all $g_1, g_2, h \in G$.

(b) For $g \in G$ with $|g|^2 \leq \frac{1}{2}$, we have

$$|g| \le \|g\| \le \sqrt{2|g|}$$

where $|\cdot|: G \to [0, \infty)$ is the absolute value on $G = \mathbb{C} \times \mathbb{R}$. Is topology induced on G by d equals to the Euclidean topology on $G = \mathbb{C} \times \mathbb{R}$?

(c) The group G with the induced topology of d is a topological group.

Bonus exercise 1 (1 point). Let T be a topological space. A function $f: T \to \mathbb{R}$ is called *lower semi-continuous* at $t_0 \in T$ if for every $r < f(t_0)$, there is a neighborhood U of t_0 such that r < f(t) for all $t \in U$.

Let $\{f_i\}_{i\in I}$ be a family of lower semi-continuous functions $f_i: T \to \mathbb{R}$. If $\sup_{i\in I} |f_i(t)| < \infty$ for every $t \in T$, then $f(t) := \sup_{i\in I} f_i(t)$ is lower semi-continuous.

Bonus exercise 2 (1 point). Let \mathcal{A} be a finite set equipped with the discrete topology and G be a countable group. Show that the balls in \mathcal{A}^G are clopen (i.e. closed and open).