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Asymptotically flat Riemannian manifolds

A complete Riemannian manifold (M,g) of dimension n ≥ 3 is
called asymptotically flat of order τ > 0 if

I there is a compact subset K ⊂ M and a diffeomorphism

Φ : Rn \ BR → M \ K ,

where BR is the closed ball of radius R at 0, such that
I in Cartesian coordinates on Rn we have for all i , j , k , `

Φ∗gij − δij = O(r−τ ),

∂k Φ∗gij = O(r−τ−1),

∂k∂`Φ
∗gij = O(r−τ−2).

as r = |x | → ∞.



The ADM mass

Let (M,g) Riemannian manifold of dimension n ≥ 3 such that
I g is asymptotically flat of order τ > n−2

2 ,
I g has scalar curvature scalg ∈ L1(M).

Then

mADM(M,g) := lim
r→∞

1
ωn−1

n∑
i,j=1

∫
Sr

(∂iΦ
∗gij − ∂jΦ

∗gii)ν
j dA

exists and is independent of the choice of Φ (Bartnik 1986).

Φ: Rn \ BR → M \ K diffeomorphism,
Sr : sphere of radius r at 0,
ν: outward unit normal vector field on Sr ,
ωn−1 = vol(Sn−1)



The mass of a closed Riemannian manifold

Let (M,g) closed Riemannian manifold, n = dimM ≥ 3.
Define the conformal Laplace operator of (M,g)

Lg := ∆g +
n − 2

4(n − 1)
scalg .

Assume that
I all eigenvalues of Lg are positive,
I g is flat on an open neighborhood of a point p ∈ M.

Then the Green function Gg of Lg at p has the expansion

Gg(x) =
1

(n − 2)ωn−1r(x)n−2 + mp + o(1) as x → p,

where r(x) = distg(p, x) and mp ∈ R.
mp is called the mass of (M,g) at p.



The mass and the ADM mass

(M,g)

p

g flat near p

(M̂, ĝ) := (M \ {p},G4/(n−2)
g g)

Schoen 1984: (M̂, ĝ) is asymptotically flat of order n − 2
with scalĝ ≡ 0 and ADM mass mADM = C ·mp with C > 0.
Example: If (M,g) = (Sn,gcan), then (M̂, ĝ) = (Rn,geucl).
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Two Positive Mass Conjectures

Conjecture (PMC closed)
Let (M,g) closed Riemannian manifold, n = dimM ≥ 3.
Assume Lg > 0 and g flat on an open neighborhood of p ∈ M.

1. Then mp ≥ 0.
2. If mp = 0 then (M,g) is conformally diffeomorphic

to (Sn,gcan).

Conjecture (PMC asymptotically flat)
Let (M,g) be asymptotically flat of order τ > n−2

2 , assume that
scalg ∈ L1(M) and that scalg ≥ 0 on M.

1. Then mADM ≥ 0.
2. If mADM = 0, then (M,g) is isometric to Euclidean Rn.

These two conjectures are equivalent
(follows from Schoen 1984, Schoen 1989, Lee-Parker 1987).
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The Positive Mass Conjecture

This conjecture has been proved e. g. in the following cases:
I n ∈ {3, ...,7} (Schoen-Yau 1979)
I M spin manifold (Witten 1981)
I (M,g) closed locally conformally flat (Schoen-Yau 1988)

Proof of the general case announced by Lohkamp 2006 and by
Schoen-Yau 2017

We introduce a more general notion of mass.
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A more general notion of mass
Let (M,g) closed Riemannian manifold, n = dimM ≥ 3.
Let f ∈ C∞(M,R). Define

Pf := ∆g + f .

Special case: If f = n−2
4(n−1)scalg , then Pf = Lg .

Assume that
I all eigenvalues of Pf are positive,
I there is an open neighborhood U of p ∈ M such that

g is flat on U and f ≡ 0 on U.
Then the Green function Gf of Pf at p has the expansion

Gf (x) =
1

(n − 2)ωn−1r(x)n−2 + mf + o(1) as x → p,

where r(x) = distg(p, x) and mf ∈ R.
mf is called the mass of Pf at p.
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Variational characterization of the mass

Let δ > 0 such that on B2δ(p) we have: g flat and f ≡ 0.
Let η ∈ C∞(M,R) such that

I 0 ≤ η ≤ 1
I η ≡ 1

(n−2)ωn−1
on Bδ(p)

I η ≡ 0 on M \ B2δ(p)

Define If : C∞(M,R)→ R by

If (u) :=

∫
M\{p}

(ηr2−n + u)Pf (ηr2−n + u) dvg .

Theorem (H.-Humbert 2016)
We have

mf = − inf{If (u) | u ∈ C∞(M,R), u(p) = 0}.
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In order to prove (PMC) it is sufficient to find u ∈ C∞(M,R) with
u(p) = 0 and If (u) ≤ 0.
We have succeeded to find such u for spin manifolds but not for
the general case.
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Real analytic families of masses
Let f , ϕ ∈ C∞(M,R). For a ≥ 0 we define

Pa := ∆g + f + aϕ.

Assume that
I for a = 0 all eigenvalues of P0 are positive,
I there is an open neighborhood U of p ∈ M such that

g is flat on U and f ≡ 0 ≡ ϕ on U.

Theorem (H.-Humbert 2016)
Let m(a) be the mass of Pa. Then a 7→ m(a) is real analytic and
convex.

I If there exists q ∈ M such that ϕ(q) < 0, then there exists
a∞ <∞ such that m(a) can be defined for all a ∈ [0,a∞)
and we have m(a)→∞ as a→ a∞.

I If ϕ ≥ 0 on M, then m(a) can be defined for all a ≥ 0 and
a 7→ m(a) is non-increasing with lima→∞m(a) > −∞.
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Positive operators with negative mass

Consider the sphere Sn with the standard metric gcan.
Let p ∈ Sn and let g be a metric conformal to gcan such that

I g is flat on an open neighborhood of p
I scalg ≥ 0 on Sn.

For a ≥ 0 consider the mass m(a) at p of the operator

Pa := ∆g +
n − 2

4(n − 1)
scalg + a scalg

I m(0) is the mass of the round sphere: m(0) = 0
I Since a 7→ m(a) is strictly non-increasing, the mass m(a)

of Pa is negative for all a > 0.
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Conformal Yamabe invariant

Let (M,g) be a closed Riemannian manifold of dimension
n ≥ 3. Define Qg : C∞(M,R)→ R by

Qg(u) :=

∫
M uLgu dvg

‖u‖2Lp

, p :=
2n

n − 2

and define the conformal Yamabe invariant of (M, [g]) by

Y (M, [g]) := inf{Qg(u) | u ∈ C∞(M,R), u 6≡ 0}.



Smooth Yamabe invariant

From the solution of the Yamabe problem we know (Aubin
1976, Schoen 1984):

I For all (M,g) we have Y (M, [g]) ≤ Y (Sn, [gcan])

I We have equality if and only if (M,g) is conformally
diffeomorphic to (Sn,gcan).

Define the smooth Yamabe invariant of M by

σ(M) := sup{Y (M, [g]) | g Riemannian metric on M}.

Example: σ(Sn−1 × S1) = σ(Sn) (Schoen 1989)
Open question: Which closed manifolds M satisfy
σ(M) < σ(Sn)?
Conjecture (Schoen): σ(Sn/Γ) = (#Γ)−2/nσ(Sn).
Useful tool: Construct a test function, use mp > 0 (work in
progress).
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