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Preface

These are the lecture notes of an introductory course on differential geometry that I
gave in 2013. It introduces the mathematical concepts necessary to describe and ana-
lyze curved spaces of arbitrary dimension. Important concepts are manifolds, vector
tields, semi-Riemannian metrics, curvature, geodesics, Jacobi fields and much more.
The focus is on Riemannian geometry but, as we move along, we also treat more gen-
eral semi-Riemannian geometry such as Lorentzian geometry which is central for ap-
plications in General Relativity. We also make a connection to classical geometry when
we apply differential geometry to derive the laws of trigonometry on spaces of constant
curvature. One fundamental result of Riemannian geometry that we show towards the
end of the course is the Bonnet-Myers theorem. It roughly states that the larger the
curvature of a space, the smaller the space itself must be.

The lecture course did not require prior attendance of a course on elementary differ-
ential geometry treating curves and surfaces but such a course would certainly help to
develop the right intuition.

It is my pleasure to thank all those who helped to improve the manuscript by sugges-
tions, corrections or by work on the IXIgX code. My particular thanks go to Andrea
Roser who wrote the first version in German language and created many pictures in
wonderful quality, to Volker Branding who translated the manuscript into English and
to Ramona Ziese who improved the layout.

Potsdam, August 2013

Christian Bar
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1 Manifolds

1.1 Topological manifolds

Reminder. Let M be a set. A system of sets O C P(M) is called a topology on M, if
1. 0, M e O

2. IfU; € O,i€ I, thenalso |J U; € O.
el

3. If Uy, Uy € O, thenalso Uy NUy € O.

The pair (M, O) is called a topological space. By abuse of language, one often speaks
about the topological space M rather than (M, O).

A subset U C M is called openin M if U € O. A subset A C M is called closed if
M\ AecO.

If both (M, Oyr) and (N, Oy ) are topological spaces, a map f : M — N is called con-
tinuous, if
fFHV)e Oy forallV € Oy.

In other words, preimages of open sets have to be open. A bijective continuous map
f: M — N, whose inverse f~! is also continuous, is called a homeomorphism. Two
topological spaces M and N are called homeomorphic, if there exists a homeomor-
phism between them.

Definition 1.1.2. Let M be a topological space with topology O. Then M is called an
n-dimensional topological manifold, if the following holds:

1. M is Hausdorff, that is, for all p,q € M with p # ¢ there exist open sets U,V C
MwithpeU,qe VandUNV = 0.
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2. The topology of M has a countable basis, that is, there exists a countable subset
B C O, such that for every U € O there are B; € B, € I with

U:U&.

i€l

3. M is locally homeomorphic to R", that is, for all p € M exists an open subset
U C M with p € U, an open subset V' C R" and a homeomorphism z : U — V.

Remark 1.1.3. The first two conditions in the definition are more of a technical nature
and are sometimes neglected. The important fact is that a topological manifold is locally
homeomorphic to R". Loosely speaking manifolds look locally like Euclidean space. If
the topology on M is induced by a metric, then the first condition is satisfied automat-
ically. If M is given as a subset of R" with the subset topology, then both conditions 1
and 2 are satisfied automatically.

Example 1.1.4. (1) Euclidean space M = R" itself is an n-dimensional topological ma-
nifold:

(1), (i) Obvious.
(iii) Holds true with U = M,V = R" and z = id.

(2) Let M C R" be an open subset. Then M is an n-dimensional topological manifold.
(1), (i) Obvious.
(iii) Holds true withU = M,V = M and x = id.
(3) The standard sphere M = S™ = {y € R*"! : |ly|| = 1} is an n-dimensional topo-
logical manifold.

(i), (ii) Obvious, since S™ is a subset of R™*!.



1.1 Topological manifolds

(iii) We construct two homeomorphisms with the help of the stereographic projec-
tion.
We define U; := S \ {SP} with
SP:=(-1,0,...,0) € R""! and set
V1 := R"™. Furthermore, we define

z: Uy — VWV,
2

1+¢0°

y=0%y' ") — 2y =
%/A_/
The map x is continuous and bijective. The inverse map y is given by

y:V1 — Ul,
1

= W(‘l — |jz|?, 42),

v — y(z)
and is also continuous. Hence, z is an homeomorphism.

Analogously, we define the homeomorphism, which omits the north pole:
Let now Uy := S™\ {NP} with NP := (1,0,...,0) € R*"! and 1, := R".
Then

.f':UQ — VQ,
JE— 2 7

y — a(y) =z v ..,y
—_—

=9
We have seen that the sphere S™ is an n-dimensional topological manifold.

(4) All n-dimensional submanifolds of R" in the sense of Analysis 3 are n-dimensional
topological manifolds.

(5) Non-Example. We consider M := {(y',4%,4%) € R3|(y")? = (v2)? + (y*)?}, the
double cone.
Since M C R3, both (i) and (ii) are

satisfied. -
| o | N )
But M is not a 2-dimensional manifold. If @

~

it were, then there would exist an open 0 R
subset U C M with 0 € U, an open subset & r

V C R? and a homeomorphism z : U — 2(q2)
V with z(0) = 0. 6 1%
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W. L o. g. assume V = B,(x(0)) with r > 0. Choose ¢1,¢2 € U with ¢f > 0 and
q3 < 0. Furthermore, choose a continuous path ¢ : [0,1] — V with

c(0) =x(q1), ¢(1) = 2(q2) and ¢(t) # x(0) forall ¢ € [0, 1].
Define the continuous path ¢ := =t oc: [0,1] — U. Then

¢(0) = qu1, é(1) = o,

that is, we have é'(0) > 0 while &!(1) < 0. Applying the mean value theorem we
find, that there exists a t € (0,1) with & (¢) = 0. Then &(t) = (0,0,0) and conse-
quently ¢(t) = x(¢(t)) = 2(0), which contradicts the choice of c. Hence, M is not a
2-dimensional topological manifold.

Definition 1.1.5. If M is an n-dimensional topological manifold, the homeomor-
phisms x : U — V are called charts (or local coordinate systems) of M.

-V C R"

~LLL

After choosing a local coordinate system = : U — V every point p € U is uniquely
characterized by its coordinates (z!(p), ... ,z"(p)).

In a 0-dimensional manifold M every point p € M has an open neighborhood U, which
is homeomorphic to R? = {0}. Consequently {p} = U is an open subset of M for all
p € M, thatis, M carries the discrete topology. Since there exists a countable basis for
the topology on M and the topology is discrete in addition, M has to be countable itself.

Thus we get:

Proposition 1.1.6
A topological space M is a O-dimensional topological manifold, if and only if M is countable
and carries the discrete topology.



1.1 Topological manifolds

Definition 1.1.7. We call a topological manifold M connected, if for every two points
P, q € M there exists a continuous map c: [0,1] — M with ¢(0) = pand ¢(1) = q.

Given two points, there has to be a continuous curve in M which connects both. Usu-
ally, in Topology one calls this path-connected, which is in the case of manifolds equiva-
lent to being connected. We do not want to go deeper into this subject at this point.

Remark 1.1.8. Following Proposition[L.I.6levery connected 0-dimensional manifold M
is given by a single point: M = {point}.

In dimension 1 there are only a few connected manifolds:

Proposition 1.1.9
Every connected 1-dimensional topological manifold is homeomorphic to R or to S*.

A proof of this fact can be found in the appendix of [M65]. Thus, the only compact,
connected topological manifold of dimension 1 is S'.

Theorem 1.1.10
Let M and A be sets. For all o € A assume that U, C M and V,, C R"™ are subsets and that
xo : Uy — V,, are bijective maps. Suppose the following holds:

@) |J Ua=M,

aEA

(ii) xo(Us NUg) C R™ is open for all o, § € A and
(iii) w5020 1 1 20Uy NUg) — x5(Us NUg) is continuous for all o, B € A.

Then M carries a unique topology for which all Uy, are open sets and all x, are homeomor-
phisms.
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Proof. We first show uniqueness:

Let O be a topology on M containing the U, and such that the z,, are homeomorphisms.
If W e O, thenalso WNU, € Oand z,(W NU,) is open for all o € A.

Conversely, if W C M is a subset such that z,(W NU,) C R" is open forall o € A, then
W NU, is also open in U, for all a.. Since U,, is open in M, the set W N U, is openin M.
By @), W = Uyca(W NUy) is also open in M. We have shown that W € O if and only
if 2o, (W NU,) is open in R" for all «,

O={W CM|zo(WnNU,) CR"openforall o« € A}.

Now we show existence:
We use the criterion for openness derived in the uniqueness part of the proof to define
the topogoly. We set:

O:={WcCM|zo(WnNU,) CR"openforall « € A}.
Now we have to check that this O is a topology and that it has the desired properties:

(a) Ois atopology because

(i) The empty set 0) is open in M because z,(0 N Uy,) = z,(0) = 0 is open in R™
for all a.. Observe that the case o = 5 in (ii)) shows that V,, = z,(U, ) is openin
R™. Now we see that M € O because z,(M NUy,) = 24(U,) = V, is open in
R™ for all a.

(ii) Assume W; € O fori € I. Then | J,.; W; € O because

T ((U m-) ﬂUa> =24 (U(m- ﬂUa)> = Jza(WinUa)

il iel i€l oenin R

is openin R" for all a € A.

(iii) The conclusion Wy, Wy € O = W1 N W3 € O follows similarly.
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(b) We have to show Ug € O for all § € A. This is obvious because z,(Ug N U,) C R"
is open for all o € A by assumption.
(c) The map g is continuous for all 5 € A because:

LetY C Vg be open. Then we have for all o € A:

2ol (Y)NUa) = alzs™ (Y Nag(Ua NUp)))
= (zaozs ) (Y Nag(U,NUg)) is openin R".
—_——— —_———

:($Bo$a_l)_1 open
continuous

open
Thus z571(Y) € O.

(d) The map z5~! is continuous because:

Let W C Ug be open. Then W € O. For all a € A the set z,(W N U,) is open, in
particular for oo = 3

(7)Y (W) = 23(W) = 25(W N Up) is an open set. O

Example 1.1.11 (Real-projective space). We define the real-projective space by
M =RP™ := P(R"™!) := {L Cc R""!| L is one-dimensional vector-subspace }.

We will use Theorem [I.1.10] to equip RP" with the structure of an n-dimensional topo-
logical manifold. We set

A := {affine-linear embeddings a : R™ — R" ™! with 0 ¢ a(R™)}.
Since « is affine-linear there exista B € Mat(n x (n + 1),R) and a ¢ € R""! such that
a(z) =Bz +c

for all x € R™. Since « is an embedding, B has maximal rank, rank(B) = n.

Consequently, a(R") is an affine-linear hyperplane. Set

Uy :={L € RP"| LN a(R") # 0}
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For L € U, the space L N o(R") consists of exactly one point, because otherwise we
would have L C a(R™) and hence 0 € a(R"), a contradiction. Moreover, we have

RP"\ U, = {L|L Cc B(R") one-dimensional subspace} (1.1)

where a(x) = Bz + c. For o € Aset V,, := R" and
To: Uy = Vi, xo(L) :=a Y(LNa(R™)).
Then z,, is a bijective map and we have
To (V) =R-av).
In the following we check the assumptions of Theorem [[.T.10t
(i) Weshow: | Uy, =M
a€cA

To this end, let ey, . . . , e, € R™*! be the standard basis. For j = 1,...,n we define:

a;(v) i=vleg+ ...+ viejg +ej i+ + o,

Assume there existed an

LeRP"\OUaj ﬁRP”\Ua
=0 §=0

/
Lcﬁeji:{O}. e]/

This is a contradiction, consequently U Ua, = RP" and hence |J U, = RP".
J=0 acA

Then

N\

(ii) We observe that z,(U, N Up) is
the complement of an affine-linear
subspace in R". More precisely, by
@D, va(Ua N Up) = o~ (a(R") \
B(R™)) where we have written
B(x) = Bz + c. Since affine-linear
subspaces are closed, 2 (U, N Up)
is open.

(iii) We show that zgoz, ™t : v+ B7L(R - a(v) N B(R™)) is continuous for all a, 3 € A.
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xgowa_l?vl
0
"
B

BR™)

Write a(v) = Bv + cand B(w) = Dw + f. Now w = z5 0 2, (v) is equivalent
to x5 (w) = z;'(v), hence to R - B(w) = R - a(v). Therefore w = x5 0 zo~'(v)
is equivalent to the existence of ¢t € R such that Dw + f =t - (Bv + ¢). For the

left-hand-side we write Dw + f = (D, f) <?f> Note that (D, f) is an invertible

(n+1) x (n+1)-matrix because otherwise we could write f as a linear combination
of the columns of D and hence 0 would lie in the image of 8. Thus we get

(g”) =t (D,f)"' (Bv+o). (1.2)
Taking the scalar product with e,,.1 = (0,---,0,1) " yields
1= <en+1, (f) > —t-(ensr, (D, f)L - (Bu + ¢)). (1.3)
Inserting (L3) into (L.2) gives us
(ﬁ”) = (ens1, (D, /) - (Bu+¢) 1 (D, /)" (Bu+c). (1.4)

This shows that the components of w are rational functions of the components of
v. In particular, they are continuous.

By Theorem [[.T.10} RP" has exactly one topology for which the U, are open and the
z are homeomorphisms. We still need criteria ensuring that this topology is Haus-
dorff and has a countable basis. Once we know this, we have turned RP" into an n-
dimensional topological manifold.

Proposition 1.1.12 (First Addition to Theorem [1.1.10)
If in Theorem [1.1.101there exists a countable subset Ay C A with

U Ua=M

acA;

then the resulting topology has a countable basis.
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Example [I.1.11l continued. For RP" the finite set A; := {ay, ..., a,} does the job. Con-
sequently, the topology of RP" has a countable basis.

Proof of Proposition The topology resulting from A has all the properties of the
topology resulting from A;. Since the topology is unique, A and A; give the same
topology on M.

Without loss of generality we may therefore assume that A; = A is countable. Now the
topology of each V,, C R™ has a countable basis B,. Then x, (B, is a countable basis
of the topogoly of U,,. Finally, |J,¢ 4 14, 1(By) is a countable basis of M. O

Proposition 1.1.13 (Second Addition to Theorem 1.1.10)
If in Theorem [L1.10lfor any two points p,q € M there is an o € A such that p,q € U, then
the topology of M is Hausdorff.

Example I.1.17| continued. For L, L, € RP" there exists an affine-linear hypersurface

EwithLiNE #0and Ly N E # 0. Lo /L

By Proposition[1.1.13] RP" is Haus- /

dorff. Summarizing, we see that N s E
RP" is a n-dimensional topological

manifold. %

Proof of Proposition[L1.13] Let p,q € M with p # ¢q. Choose an « € A with p,q € U,.
Since R™ is Hausdorff, we can choose Vi, Vo C V,, open with z,(p) € V1, z4(q) € V2 and
Vi NVa = 0. Then 2,1 (V1) and z, 1 (13) separate p and q.

Lo

We summarize:

10



1.2 Differentiable manifolds

Corollary 1.1.14

Let M and A be sets and let Ay C A be a countable subset. For all « € A assume that
Uy C M and V,, C R™ are subsets and that x., : U, — V,, are bijective maps. Suppose the
following holds:

@ |J Ua=M;
acA
(ii) 24Uy NUg) C R™ is open for all o, f € A;
(iii) 25036 1 20(Us NUg) — x5(Uy N Up) is continuous for all o, B € A;
(iv) for any two points p,q € M there is an o € A such that p,q € U,.

Then M carries a unique topology which turns M into an n-dimensional topological manifold
such that the x,, : U, — V,, are charts.

Example 1.1.15 (Complex-projective space). In complete analogy to the real-projective
space we define complex-projective space by

CP" := P(C"™) := {L. ¢ C""!| L is one-dimensional complex subspace }.

Like in the real case we obtain charts z, : U, — C" = R?". This turns CP" into a
2n-dimensional topological manifold.

1.2 Differentiable manifolds

For a topological manifold M, like for any topological space, it makes sense to speak
about continuous functions f : M — R. In a course on differential geometry we will
certainly need to differentiate functions. But what does differentiability of f mean?

Attempt of a definition. The function f is called differentiable at p € M if for some chart
x: U — V with p € U the function f o 7! : V — R is differentiable in z(p).

This is, in principle, a very reasonable definition. It means that f is differentiable on M
if it is differentiable on R™ when expressed in coordinates. But there is a problem with

11
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this definition. If y : U — V is another chart with p € U, then near 5(p) we have

foy™t=(foaNo(xoy™).

—_———
diff’able only
at z(p) continuous

This concept of differentiability depends on the choice of chart = and this is really bad
because on a general topological manifold there are no preferred coordinate systems.
The sad truth is that there is no reasonable concept of differentiable functions on a
topological manifold.

But there is one thing we can do, we can refine the notion of a manifold. If z o y~! were
a diffeomorphism and not only a homeomorphism, then the differentiability of f o 27!
would imply the differentiability of f o y~!. We enforce this by making the following
definition.

Definition 1.2.1. Let M be an n-dimensional topological manifold. Two charts
z:U—=Vandy:U — V of M are called C*°-compatible if

yor t:z(UNU) = yUND)

is a C*°-diffeomorphism.

1% %

yoa!

Definition 1.2.2. A set of charts z, : U, — V,, of M, o € A, is called atlas of M, if

U Ua =M.

acA

An atlas A is called a C°°-atlas if any two charts in .4 are C*°-compatible.

12



1.2 Differentiable manifolds

Example 1.2.3
(1) Let M = U C R" be open. Then A := {id : U — U} is a C*°-atlas.

(2) Let M = S"and A := {(z : Uy — WV1),(Z : Uy — Va)}, where Uy := S™\ {SP},
Uy := 8"\ {NP}and V; := V3 := R", compare Example[1.1.4l3] Furthermore, let

2 .
CE(y) = W Y, where Y= (yO, y) € RnJrl’
1
- (4 |x|%4 d
We) = g lelPas) an
- 2
I(y) = il

Then we have for v € x(U; NUsz) = x(S™ \ {SP,NP}) =R"\ {0}:
]2
Forl(v) = & (4 L >

4+ o2 4+ o2

B 2 4v

1 4—Jlol* 4+ |lv]?

T A2

4+ ol

_ 8v
Aol =44+ vl
_ 4v

[[v]|2°

Hence 7 o 271 is C*®° on R \ {0} = x(S" \ {SP,NP}) = z(U; N Us). Similarly one
sees that z o 77! is smooth. This shows that z and # are C*°-compatible. Hence A
is a C*°-atlas.

(3) Let M = RP", A := {z, : U, — R" |z, is an affine-linear embedding R" — R"*!
of maximal rank and 0 ¢ «(R")}, compare Example [.T.11l All changes of charts
T30z, ! are rational functions and hence C*. Therefore A is a C*-atlas.

(4) Analogously, for M = CP" as in Example [.1.15] the resulting atlas is also a C'*°-
atlas.

Remark 1.2.4. If Ais a C*°-atlas of M then
Amax = {charts z of M | z is C*°-compatible with all charts in A}

also is a C'*°-atlas of M. The reason is this:
If x and T are two charts of M, which are C°°-compatible with all charts in A, then also x and
Z are C*°-compatible with each other.
Namely, for any p € (U NU) there exists a chart y : U — V in A with z~'(p) € U. Near
p we then have:

foax = (Foy o(yoa™).

—_———— ——
C> Ok

13
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Hence # o 2! is C* and similarly for z o 7L

Definition 1.2.5. An C*°-atlas Amax is called maximal (or also differentiable struc-
ture), if every chart that is C°°-compatible with all charts in Ay, is already con-
tained in A qx-

According to Remark [1.2.4] every C*°-atlas A is contained in exactly one maximal C*°-
atlas A ax.

Definition 1.2.6. A pair (M, Apax), where M is an n-dimensional topological mani-
fold and A,,.x a differentiable structure on M, is called an n-dimensional differen-
tiable manifold.

Definition 1.2.7. Let M and N be differentiable manifolds, let p € M and let
k € NU {oo}.
A continuous map f : M — N is called k-times continuously differentiable (or C¥)
near p, if for one (and therefore for every other) chart
(x:U—=V)€eApax(M) withpe U
and for one (and therefore for every other) chart
(y:U—V) € Anax(N) with f(p) €U
there exists a neighborhood W C z(f~%(U) N U) of z(p), such that
yofox l: x(ffl(U)ﬂU) -V

isC*onW.

14



1.2 Differentiable manifolds

Example 1.2.8

(1)

Let M = S™ with the differentiable structure given by
A={(x: U1 = V1),(& : Uy — Va)}
as in Example We show that
f8" =8 fly) =—v,

is C°° near NP. In fact, f is C*° on all of S™. We compute

- el |
R"3v &= 27 l(v) = < ,
A+ [ol? 4+ lv]l?

e —
4+ lof>" 4 + ol

2 ey 8v

&
— — . = —— = —
AP TP TS
4+ [lvf?
Consequently, o f o 271(v) = —v and in particular 7 o f o 271 is C* on R™. Thus,

we may consider W = R".

This argument shows that f is smooth near all points except SP because SP is the
only point not contained in the chart U;. Interchanging the two charts one sees
similarly that f is also smooth near SP. Hence f is smooth on all of S”.

We consider the atlases A; := {zr = id : R — R} on M = R with differentiable
structure Aj max and As := {7 : R — R} with #(¢) = ¢® and differentiable structure
AQ,max-

Now 7 oz~ 1(t) = t3is C™, but z 0 T71(t) = V/t is not.

Consequently, z and # are not C*°-compatible and therefore the differentiable struc-
tures are different:

Al,max ?é AQ,max'

15
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e Isid : (R, Aj max) — (R, A2 max) @ C*°-map?
id
R——R
m=idj Ji = Foidoz !'is C> and therefore also id.
t—t3

R——

e Isid : (R, A2 max) — (R, A1 max) @ C*°-map?
id
R——R

R

1

lx:id = goidoz™ " is not C°° and the same holds true for id.

t— V1
oV
Summarizing we see that id is a homeomorphism from (R, A max) to (R, A2 max)
which is smooth but its inverse is not.

Definition 1.2.9. Let M and N be differentiable manifolds. A homeomorphism
f: M — N is called a C*-diffeomorphism, if f and f~! are both C*. Instead of C*°-
diffeomorphism we simply say diffeomorphism. If there exists a diffeomorphism
f:M — N,wesay that M and N are diffeomorphic.

Example[1.2.8/2 continued. Let M = (R, A max) With Aj nax = {z =id : R — R} and
N = (R, A2 max) With Ag ax = {Z : R = R, Z(t) = t3}. We have seen thatid : M — N
is not a diffeomorphism. But f : M — N, f(t) = /¢ is a diffeomorphism because

!
M—N

R——R
Thus M and N are diffeomorphic.

Question. Is every differentiable structure on R" diffeomorphic to the standard struc-
ture Apax, the one induced by A = {z =id : R* — R"}?

The answer is quite surprising. For n = 0,1,2,3 and also for n > 5 it is YES. But for
n = 4 it turns out to be NO. There exist uncountably many differentiable structures on
R* which are pairwise not diffeomorphic (so-called exotic structures). The proof of these
facts is far beyond the scope of our lecture course.

Remark 1.2.10. In 1956 John Milnor showed that there exist exotic n-dimensional
spheres for n > 7. These are differentiable manifolds which are homeomorphic to
S™ but not diffeomorphic. But in every dimension there are only finitely many.

16



1.3 Tangent vectors

1.3 Tangent vectors

Question. What is the derivative at a point of a differentiable map between differenti-
able manifolds?

The vague answer is: It is the linear approximation of the map at that point. But what
do we mean by the linear approximation in a point of a differentiable manifold? For this
to make sense we first need a concept of “linear approximation” of a manifold at a given
point.

Definition 1.3.1. Let M be a differentiable manifold and p € M.

A tangent vector on M at the point p is an equivalence class of differentiable curves
c: (—e,e) > M with e > 0 and ¢(0) = p, where two such curves ¢y : (—e1,61) &> M
and ¢y : (—e2,e2) — M are called equivalent, if for a chart x : U — V with p € U we

have:
d

a(x ocy)li=0 = %(90 0 ¢2)|t=0-

Remark 1.3.2. This definition does not depend on the choice of the chart z : U — V.
Namely, if y : U — V is another chart with p € U then we get by the chain rule

d d

a(y 0C)|t=0 = pn ((y o 56_1) o(xo c)) lt=0 = D(y o 56_1) |x(p) (%(:ﬂ o c)|t:0> . (L5

Therefore the condition

d

E(u’ﬂ ocy)|i=0 = E(u’ﬂ o ca)lt=0

is equivalent to the condition

d d
E(y ocy)li=0 = E(y 0 ¢2)|t=0-

Notation 1.3.3. We denote the equivalence class of ¢ by ¢(0).

17



1 Manifolds

Definition 1.3.4. The set
Tp,M := {¢(0)|c: (—¢,e) = M differentiable with ¢(0) = p}

is called tangent space of )M at the point p.

Lemma 1.3.5

Let M be an n-dimensional differentiable manifold, let p € M and let x : U — V be a chart
of M with p € U. Then the map

d
dz|, : T,M — R", ¢(0) — a(x o ¢)lt=0,

is well defined and bijective.

Proof. Well-definedness and injectivity are clear from to the definition of the equiv-
alence relation that defines ¢(0). To show surjectivity let v € R" and set
c(t) .= 27 (z(p) + tv). Choose ¢ > 0 so small that z(p) + tv € V whenever |t| < .
Then we have

daly(0)) = 5 (w0 (ap) + ) limo = 5 (2(p) + 10) o = .

This shows surjectivity and concludes the proof. O

18



1.3 Tangent vectors

Definition 1.3.6. We equip 7),M with the unique vector space structure for which
dz|, becomes a linear isomorphism. In other words, for a,b € R and
c1:(—e1,e1) = M, ¢y : (—e9,82) — M we set:

a-é1(0) +b-é(0) := (dwlprl(a ~daly(61(0)) +b- dwlp(c'2<0>))-

Lemma 1.3.7
The vector space structure on T),M does not depend on the choice of chart x : U — V.

Proof. Let y : U — V be another chart with p € U. We have to show that the map

dy|p : T,M — R™ is also linear with respect to the vector space structure induced by z.
This holds true since by (1.5)

dy|p = D(y © x_l) |x(p) © dx|P
N——
linear linear

is the composition of two linear maps. O

We may think of the tangent space T}, M as the linear approximation to M at p. Now we
can define the differential of a differentiable map between manifolds.

Lemma 1.3.8
Let M and N be differentiable manifolds, let p € M, and let f : M — N be differentiable
near p. Then the map

dflp : T,M — Ty N, ¢(0) = (f 0 ¢)(0),

is well defined and linear.
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Proof. We choose a chart z : U — V of M withp € U and a chart y : U — V of N with
f(p) € U. We compute, using the chain rule,

dyl ¢y ((f 0 )(0)) = (y o f o c)(0) |
= (o sor)o(@oo)) ()

= D(yofor gy (0 cj0)
— D(y ofo x_1)|x(p) 'd$|p(é(0))'

Consequently, we have

—1 _
df’p = (dy‘f(p)) OD(yo fow 1)’m(p) Odw‘P'

In particular, df|, is well defined (independently of the choice of ¢) and linear. O

Definition 1.3.9. The map df | is called the differential of f at the point p.

Remark 1.3.10. If U C M is an open subset, then the differential of the inclusion map
v : U — M is the canonical isomorphism dv : T,U — T, M, given by

¢(0) = (Loe)(0) = ¢(0).

We will identify tangent spaces via this isomorphism and simply write 7,U = T,,M.

Remark 1.3.11. If M is an n-dimensional R-vector
space, then M and T}, M are canonically isomorphic via

M — T,M,
v épe(0),

where ¢, ,(t) == p + tv.

Remark 1.3.12. Fora chartz : U — V the differential dz|, has two meanings which are

20



1.3 Tangent vectors

related by this canonical isomorphism. The following diagram commutes:

¢(0) 4 (z 0 c)(0)
¢ dz|p m n
TpU Tx(p)V = Tx(p)R
dffpl E/
'(\O“C S
Lizoc)mg € R' o™

Theorem 1.3.13 (Chain Rule)
Let M, N and P be differentiable manifolds and let p € M. Assume f : M — N and
g : N — P are differentiable near p and near f(p), respectively. Then the following holds:

d(g o flp = dgls) © df |-

Proof. Fora curve c: (—¢,¢) — M with ¢(0) = p we have:

(g o Fp(e(0)) = (g ) o c)lemo
d

L (g0 (o) s
= dgl () ((f ©¢)(0)
—d9|fp (df|p(c 0))) O

This proof of the chain rule was very simple. One may wonder why the proof of the
chain rule that one remembers from one’s course on calculus of several variables re-
quired a lot more work. The reason for the simplicity here is that one has already built
the chain rule into the definition of the differential of a map.

Definition 1.3.14. Let M and N be differentiable manifolds. Let £ € NU {c0}. A
surjective C¥-map f : M — N is called a local C*-diffeomorphism, if for all p € M
there exists an open neighborhood U of p in M and an open neighborhood V' of f(p)
in N, such that

flo:U—=V

is a C*-diffeomorphism.
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1 Manifolds

Example 1.3.15. Let f : R — S!, f(t) = e
Then f is not injective (in particular, not a dif-
feomorphism), but it is a local diffeomorphism:
For ty € R choose U := (ty — m,top + m) and

V= 8"\ {—f(to)}-

Remark 1.3.16. If f : M — N is a local Ck-diffeomorphism, then
df‘p : TpM — Tf(p)N

is an isomorphism. In particular, we have dim(7,M) = dim(T,)N) and therefore also
dim M = dim N.

Proof. W.lo.g.let f be a C*-diffeomorphism. For a curve ¢ : (—¢,¢) — M with ¢(0) = p
we have: .
d(id )|y (¢(0)) = (idas 0 ¢)(0) = é(0)

and hence
d(idM)p = idTpM-

Applying the chain rule we find:
idr,ar = d(idy)|p = d(f 71 o f)lp = df | ) 0 df |-

Analogously, we can derive df|, o df 71| f(p) = 1d1;, N. Therefore we get:

df s = (dflp) " O

The converse of the last statement is also true:

Theorem 1.3.17 (Inverse Function Theorem)

Let M and N be differentiable manifolds and let p € M. Let f : M — N be a C*-map,
kE>1

Ifdfp : TyM — Ty, N is an isomorphism, then there exists an open neighborhood U of p

in M and an open neighborhood U of f(p) in N, such that

flo:U—=T

is a C*-diffeomorphism.
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1.4 Directional derivatives and derivations

Proof. Choose a chart z : Uy — V; of M with p € U; and a charty : Uy — V, of N with
f(p) € Us.

On z(Uy N f~1(Us)) the map y o f oz~ ! is defined. Since df |, is invertible, we also have
that D(y o f o x71)|,(,) is invertible.

The ”classical” inverse function theorem says that there ~exists an open neighborhood
V C z(Uy N f~1(Us)) of z(p) and an open neighborhood V' C V5 of y(f(p)), such that

yofor lly: VoV

is a C’k—diffeomorphism. With U := z7 (V) and U := y (V) it follows that
flv : U — U is a C*-diffeomorphism. O

1.4 Directional derivatives and derivations

Definition 1.4.1.

Let M be a differentiable manifold, let p € M and and
let ¢(0) € T, M. For a function f : M — R, differenti-
able near p, we call

B = dflp(E(0)) = 2 (f 0 )i € R i

the directional derivative of f in the direction ¢(0).
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Notation 1.4.2. For U C M openand k € NU {co}, we write
CFU):={f:U—R]|fisCF}.

Fora € R, f € C¥(U) and g € C*(U) we set

a-fe C*U), (o flg):=a-f(g)
f+ge CHUNU), (f+9)(q):=F(g)+g(q)
f-ge C*UNU), (f-9)(9):=F(a) 9(q)
and
cy = J c=@).
Uopen

Definition 1.4.3. A map 9 : C;° — R is called derivation at p if the following condi-
tions are satisfied:

(i) Locality: If UcUis open, p € U, fe C>(U), then
of = o(flg)-
(i) Linearity: If o, 8 € R, f,g € C;°, then

d(af + Bg) = adf + Bog.

(iii) Leibniz Rule: For f,g € Cp° we have

o(f-g)=0f-glp)+ f(p) - 9g.

Example 1.4.4

(1) Let M =R"and p € M. Then 9 = 52

» is a derivation.

(2) Let M be an arbitrary differentiable manifold, let p € M and ¢(0) € T, M. Then 9;q)
is a derivation. We check (iii):

Oy (79) = (9ol
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1.4 Directional derivatives and derivations

= %((foc) (g oc))li=o

= %(f 0 ¢)li=0 - g(c(0)) + f(c(0)) - %(g 0 ¢)li—o
= eo)f - 9(p) + F(p) - De(0)9-

The other two conditions are even simpler to verify.

Remark 1.4.5. The set Der(Cp°) of all derivations at p forms an R-vector space via

(@01 + BO2)(f) = adL f + BOaf.

Lemma 1.4.6
The map 0. : T,M — Der(C,°), ¢(0) = Oo), i linear.

Proof. Letz : U — V be a chart of M with p € U. By the definition of the vector space
structure on T,,M, we have to show that 9 o (dz|,) ! is linear. Assume v € R" and put
c(t) ==z~ (z(p) + tv). We find:

(8.0 (daly) ' @)() = dfly((dal,) " (v))
= df[y(¢(0))
d
= (T oe®) =0
— %(f oz (z(p) + tv)) 1=0
= <grad(fox_1)|$(p),v>.

This expression is linear in v. O

Remark 1.4.7. Let e1,...,e, be the standard basis of R". Then
(dz|,)"t(e1), ..., (dz|y) " (en) form a basis of T,M. We find

I(fox™t)

Oasly)1(ep)(f) = (grad (f o s ™oy e5) = =5 | = 55

’ J
85610

z(p)
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1 Manifolds

For every chart « we have the derivations

9
ozt

0

7...7—n
» ox

Proposition 1.4.8
Let M be a differentiable manifold and let p € M. Then the map

0. : T,M — Der(Cy°), ¢(0) = 8;),

is an isomorphism. In particular, every derivation is a directional derivative and for every
chart x : U — V withp e U

R el
81171 p7.”7 82?” p
is a basis of Der(C}°).
Proof. It suffices to show that the derivations
9 9
ol R

form a basis of Der(C;°). Namely, then we know that the linear map 9. maps the basis
(dz|,)"t(e1), ..., (dz|y) " (en) of T,M onto the basis % b %‘p of Der(C;°) and is
hence an isomorphism.

n
) ;0
a) Linear Independence: Let E o' —| = 0. We have to show: a! = ... = a" = 0.
el
Choose f = 27. Then
n A
Ozl .
0= ol I8 =d forj=1,...,n.
Ox*
i=1 P
—
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1.4 Directional derivatives and derivations

b) Generating Property: Let § € Der(C°). Set o := §(a7) for j = 1...,n. We will show
that

p

— i, 2
6= 5
Jj=1
b1l) We have

5(1) =6(1-1) P 5(1) -1+ 1-6(1) = 26(1)

and hence 6(1) = 0. Now let « € R. Then we find

d(a) =6d(a-1) L i(1) =0.

Consequently, derivations vanish on all constant functions.

b2) Let f € C;°, more precisely f € C>°(U) with p € U open. Choose a neighbor-
hood U of pwith U ¢ UNU and z(U) = B(z(p),r).

z(UNU)

Lemma .49 (see below) with h = f o x7! says that there exist gi,...,9, €
C>(B(z(p),r)) such that

(fow”)W)Z(fow”)WQﬂ%+§:@f—wTM)wmw) and

ox~1
ﬂ%ﬁrluwnzm@@»

It follows that
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(N 2 a1
(%:il)) Z(S(m —z( gox))

DY (5~ 20) - 0u(a0) + ( — 200 o)

(i) n

5762 gi(2(p))

Lemma 1.4.9
Let h € C*°(B(q,r)). Then there exist g1, ..., g, € C°°(B(q,r)) with

(i) +Z z' — ¢")gi(x) and

i) agfﬁ( ) = (o)

Proof. Forx € B(q,r) setw, : [0,1] = R, wy(t) := h(tx + (1 — t)q). It follows that
hz) = hg) = we(1) —ws(0)

Oh

7t

(2" —¢)dt
te+(1—t)g

=1

= @ ) /@
i=1 rd Oz’ tx+(1—t)q

/

dt

=: gi()
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1.4 Directional derivatives and derivations

With this definition of the g;, (i) holds. Moreover, (ii) follows from (i) by differentiation
atq. ]

At this point we have the following situation for a differentiable manifold:

0.

(dzly)~'(ej) € TpM Der(Cp®) > g%l

R"
~—
=) (ij

12

1

depend on
the choice of

From now on we identify T}, M with Der(Cy°) via the isomorphism d.. For example, we
write for £ € T,M

0
oxt

§=> ¢
i=1

Jand & = _ilgi(dm\,,)l(ei) where (€1,...,€")T = dal,(€).

p

n .
instead of 0¢ = ) ¢’ a(zi
i=1

Question. How do the coefficients ¢, ..., £" of a tangent vector change, if we replace
the chart x by another chart y?

Let ¢ € T, M, let x and y be charts, both containing p. We express £ with respect to both

charts
— i — Jj_“
¢ ;5 oxt ZU oyI

p j=1 p
Now we want to compute the coefficients ¢’ in terms of the 7/ and vice versa. Using the
Chain Rule (Theorem [1.3.13) we compute

¢t nt nt
D = dalp(€) = (dalp) | (dylp) | =D(z oy lyp
§" n" n"

n' ¢!
Interchanging the roles of x and y, we also get ( : ) =D(yo x_1)|x(p) < : ) . Thus
n" 13

. n 'o -1 .
W= Z M g (1.6)

i=1 Oz z(p)
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In the physics literature this transformation rule is put at the heart of the definition of a
tangent vector, then usually called a contravariant vector. For a physicist, a contravariant

vector is a vector (£1,. .., £™) associated to a chart which transforms as in (I.6) when the
chart is changed. We have now understood that this vector is the coefficient vector of
an (abstractly defined) tangent vector with respect to the basis % ! e % of T,M
zl Ip z™ | p
induced by the chart z.
Let us look at the special case { = a(zi o thatis, (¢1,...,6")T = e;. By (L6), we get
0 "0
A Z U
ox' |, = oy’
Sk Oy o) 9
= 2.2 ¢ g o
j=1k=1 ®» %Y Ip
DALl )
= 0 gy O,
hence
aai _ % . % (1.7)
Tlp o 3 * z(p) YY" Ip

In the physics literature it is customary to use the Einstein summation convention mean-
ing that when an index appears twice in an expression, once as an upper index and
once as a lower index, then summation over this index is understood. So (1.7) would
be written as

g Oy oz~ 1) i
ox? » ox? +(p) oyJ »
or even shorter as
o oy o
ozt Oxt Oy’

This makes formula (I.7) easy to memorize; we simply cancel 9y7. In these lecture notes
we will not use the Einstein summation convention unless explicitly stated otherwise.
But when you do computations for yourself, the Einstein summation convention can
be quite convenient and is recommended as long as you are aware of it.
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1.5 Vector fields

1.5 Vector fields

Next we want to introduce vector fields. Vector fields are maps
which associate to each point of a manifold a tangent vector
in the corresponding tangent space. Hence the target space
is varying and depends on the point. For this reason we first
need to introduce the tangent bundle.

Definition 1.5.1. Let M be a differentiable manifold. Then we call
T™ = | | T,M
peEM
the tangent bundle of M.

We equip T'M with the structure of a differentiable manifold. Denote the differentiable
structure of M by Ay max. Letm : TM — M, n(§) = p for £ € T,,M be the “footpoint
map”. For every chart x : U — V in Aps max We construct a chart X, : U, — V, of TM
as follows: We set

U, : =7 '(U)CcTM,
V, =V xR*CR?*" and
X, (€)= (2(m(9)) dalnie) (©)).

Then we have X, ' (v,w) = (dz|;-1(,)) "} (w).
Schematic picture:

TM
X, ‘ vV,
M €T
By construction we have:
U v.=1m
(x:U—V)
6'AM,max

1Source: |http://www.weatheronline.co.uk
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Let z and y be charts on M. Then we have:

XyoXo '(v,w) = Xy((daf-10)) " ()

<y(77((dx’$*1(v))71(w))) s @Y n((dal, -1 ) (w) ((dx!mfl(v))fl(w)))
= <y(x_1(v))ady|m_1(v)((dx|m_1(v))_1(w))>

= ((goa )@, Dyoa™)l, w).

haeund ——
C'oe Coo

Hence X, o X . lisa C*°-diffeomorphism, in particular, it is a homeomorphism. By
Theorem TM carries exactly one topology, for which the X, are homeomor-
phisms.

We show: The topology of T M has a countable basis. Since the topology of M has a count-
able basis, M has a countable C*°-atlas. Then the corresponding (countably many)
charts of TM sulffice to cover T'M. By Proposition [.1.12] the topology of TM has a a
countable basis.

We show: T'M is Hausdorff. Let £, € TM with £ # n. We consider two cases.

Case 1: 7(&) # w(n).

Since M is Hausdorff there exists an open neighbor-
hood U; of 7(£) and an open neighborhood Uy of 7(n)
such that U; N Us = (). The sets 7~ (Uy) and 7~ 1(U»)
are open neighborhoods of £ and 1 with

Y U) Na (Uy) = 0.

Case 2: (&) = m(n).

Let x : U — V be a chart of M with 7(§) = n(n) €
U. Then we have ¢, € 7~ 1(U) = U,. The proof of
Proposition [.1.13 shows that we can separate ¢ and

n.

We summarize: The tangent bundle 7'M carries a unique topology turning it into a
2n-dimensional topological manifold with atlas

Ay = {)(33 U, — 'V, | (CE U — V) € AM,max}-

Since the changes of charts X, o X, ! are not only homeomorphisms but C°°-
diffeomorphisms, we find that A7), is a C*°-atlas. Hence (T'M, A7y max) becomes a
2n-dimensional differentiable manifold.

Remark 1.5.2. The footpoint map 7 : TM — M is expressed in the charts x : U — V of
M and X, : U, — V, of TM by

zormo X VxR =V, (v,w)r v

In particular, 7 is a smooth map.
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1.5 Vector fields

Definition 1.5.3
Amap ¢ : M — TM is called a vector field on 1,
if for all p € M we have

m(&(p)) = p.

=

Remark 1.5.4. Letz : U — V be a chart of M. A vector field £ on U is characterized by
coefficient functions
L. "V SR

for which
§p) =D _&(2(0) 5
i=1

p

Since a vector field is a map from the differentiable manifold M to the differentiable
manifold 7'M we know what it means that the vector field is C*. We investigate how
this can be characterized in terms of the coefficient functions. For the chart x of M we
consider the corresponding chart X, on 7'M . The commutative diagram

M—S—1M
U €] U
e~ (v)e U——1U, >&(x(v))
T Xz
1)
-1 -1
veV V x R"> <gc(7r(§(x (v))) ), dz| (e (o) (&(x (v))))
N N = (v,£4(v),...,&"(v))
R™ R2n
shows that £ corresponds in these coordinates to the map v — (v,&'(v),...,£"(v)).
Thus ¢ is C* on U if and only if the coefficient functions £ L. .., ¢vareC*onV.

Example 1.5.5. We consider M = R? with polar coordinates. For ¢y € R we set U :=
R2\ Rxq - < Z?szo ), V :=(0,00) X (¢0, 90+ 27) and y : U — V such that
0

y_l(r, @) = (rcosg,rsinp).

On U the vector field ¢ := rag is defined. Using (L.7) we express this vector field in
r
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terms of Cartesian coordinates, i.e., with respective to the chart z = id : R? — R?:

9
"or
o o oo
= "\or 921 T or 922
_ T<8(rcosgp)i+8(rsingp) 8)

£ =

or ol or 0z

_ O oD
= r cosgpagc1 smapam2

In Cartesian coordinates:

Similarly, we can express the vector field %

in Cartesian coordinates:
o _ oo oo
0o Op Oxt Oy Ox?

= —rsingpﬁ +rcosgpﬁ
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2 Semi-Riemannian Geometry

On topological manifolds one can consider continuous maps. In order to be able to
define differentiable maps we had to add structure to a topological manifold which
gave rise to differentiable manifolds. We were then able to define linear approxima-
tions to manifolds (tangent spaces) and and to maps (the differential). The concept of a
differentiable manifold is what one needs to do analysis.

In order to do geometry we need to enrich our manifolds once more. We want to mea-
sure lengths of and angles between tangent vectors. This requires scalar products on
the tangent spaces and leads to the concept of a Riemannian manifold.

2.1 Bilinear forms

We start by recalling some facts about bilinear forms from linear algebra.

Definition 2.1.1. Let V' be an n-dimensional R-vector space. A symmetric bilinear
formisamap g: V x V — R with

@) g(av + fw, z) = ag(v, z) + Bg(w, z) forall v,w,z € V and «, 5 € R and
(ii) g(v,w) = g(w,v) forall v,w € V.

We call g non-degenerate if g(v, w) = 0 for all w € V implies v = 0.

For a basis (b1, ...,b,) of V we set
Gij = g(bi,bj) eR

fori,j =1,...,n. Then (gj)ij=1,..n is a symmetric n X n-matrix. From (g;;); j=1,...n we
. _ n i, _ n 7, . .
can reconstruct g: Forv =) " , a'b; and w = ijl B7b; we have:
n

g(v,w) = g(Zaibi,Zﬁjbj> = > By
i—1 =1

i,j=1

35



2 Semi-Riemannian Geometry

Notation 2.1.2. Letbj, ..., b} the dual basis of the dual space V* = {linear maps V' —
R} of by, ..., by, thatis b7 (b;) = 6;;. Often, we write

n
g= Zgz’jbf®b}

3,j=1

The insertion of v, w € V then means the following:

gv,w) = gi b (v) b5 (w) = Y gijal Bl

i,j=1 ij=1

Transformation of principal axes. Let g be a non-degenerate symmetric bilinear form

on V. Then there exists a basis e1, . .., e, of V, such that
(ei,€;) ’ t7J
€i,€) = . i
gene gie{xl} i=3j
in other words,
-1 0
(Qz‘j)z‘,jzl,...,n = -1 1 . (2.1)
0 "

Such a basis is called a generalized orthonormal basis. We the number of —1’s oc-
curring in (2.1) the index of g and denote it by Index(g). We observe that for a non-
degenerate symmetric bilinear form the following are equivalent:

(1) gisa Euclidean scalar product;
(2) gis positive definite;
(3) Index(g) = 0.

b,) and B= (l;l, ..., by) are two bases of V, we define the transformation
)ij=1,..n DY

If B = (by,. ..

%,
matrix 7' = (¢!

b = Zn:t{bj.
j=1
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2.2 Semi-Riemannian metrics

Then the representing matrix of g transforms as follows:

g o
gfj) = g(bub]
= g( tkbk,Ztlbl>
k=1
= Y tith g, by)
k=1
= B
= Y kil glP (2.2)
k=1

Let V and W be two finite-dimensional R-vector spaces. Let g be a symmetric bilinear
formonVand ® : W — V be a linear map. Then we can pull back g via ® to W, that
is, we can define a symmetric bilinear form ®*g on W by

(<I>*g) (w1, ws) := g(@(wl), <I>(w2)).

Remark 2.1.3. If g is positive definite, then ®*g is positive semidefinite. Namely:
(2*g)(w, w) = g(®(w), ®(w)) 20 Vwe W.
If furthermore @ is injective, then ®*¢ is also positive definite. Namely:

(®*g)(w,w) =0 = P(w)=0 = w=0.

Definition 2.1.4. Let gy and gy be symmetric bilinear forms on V and W, respec-
tively. We call a bijective linear map ® : W — V an isometry, if

gv (®(w1), ®(w2)) = gw (w1, we), Ywi,wy €W,

that is, if (I)*gv = gw-.

2.2 Semi-Riemannian metrics

Let M be a differentiable manifold. We consider maps g which assign to every point
p € M anon-degenerate symmetric bilinear form g|, on T,,M. If x : U — V is a chart of
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2 Semi-Riemannian Geometry

(z)

M, we define 9i;" =9i : V — R by

0

0
g'LJ(v) = g|x_1(v) (%

z~1(v) ’ @

wl(U))

Definition 2.2.1. Such a map g is called a semi-Riemannian metric on }, if the map
depends smoothly on the base point in the following sense:
For every chart 2 : U — V of M the g;; : V — R are C*°-functions.

Remark 2.2.2. Note the similarity of the definition of smoothness of g with the charac-
terization of smoothness of vector fields in Remark [1.5.4 We express the vector field
or semi-Riemannian metric with respect to the basis %, ce a% of the tangent space
induced by a chart and then require smoothness of the coefficient functions.

Transformation by change of charts

Letz:U — Vandy: U — V be two charts of M with p € U N U. By (I.2),

0 B i a(xj oyil) ‘ i
9y* P j=1 Oy’ y(p) Oz’ P
~—~ , —
= = tg = bj
Inserting this into (2.2) yields
o) ~ O@roy ™| Oaloy™) (x)
9;; (y(p)) = —— : 9 ((p))
’ 1@231 0y y(p) oy’ y(p)
For all v € y(U N U)) we hence have
"L 9(aF oy ! Azl oyt z _
o 0= > A AR ) ey o) | @)
k=1 v v

In the physicist’s short notation this formula reads as

ok ozt z _
o = Gy 0o (ov )
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2.2 Semi-Riemannian metrics

Consequence. The condition that g is smooth does not have to be checked for all charts,
if suffices to check it for a subatlas of A,,.x (M) which covers M.

Remark 2.2.4. Recall that dz|, : T,M — R" is a linear isomorphism for any chart
z:U — V with p € U. In particular, dz'|,,...,dz"|, € (T,M)*.

Definition 2.2.5. The dual space (7, M)* =: Ty M is called cotangent space of M
at p.

Lemma 2.2.6

The dz'|,, ..., dz"|, form the dual basis of % 0

,---’—n
» ox

p

Proof. Since dx|,, (

0 . ,
gy ):eiwehavedmjlp<aiip>:5§fori:1,...,n. O
X
P

According to Notation2.1.2l we may also write:

glp = gij(z(p)) - da'], @ da’l,
ij=1

In the physics literature you will find the following short version of this equation:

g =g -da" - dx’

~ n .
If one changes the basis of a vector space by the transformation b; = > tg b;, then we
j=1
get

n
by = tib.
j=1
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2 Semi-Riemannian Geometry

Namely, denote the transformation matrix by 7' = (tz ). Then we find:
(S5 - (E59)(r0
=1
= Z t5 (7715, 05 (br)

Jl=1 5
J
n
— i —1\J
= D50
j=1
= 5]2,
hence
n
]
Z t b5 =i
j=1
For b} = dz',, ..., b = dz"|, this means:

; " Ozt oyt
d$|pzz(7»)

- dy’ b
j=1 Oy’ y(p)
or, in the physicist’s short notation
Y
dz' = — dy’
oy’ Y

If you have forgotten the transformation formula (2.3), you can quickly deduce it in
“physics style” as follows:

g,(fl/) . dyk . dyl = gg) cdzt - da?
@ (02" .\ (92
A (01/’“ y ) ' <3yl dy)

Comparing the coefficients in the blue boxes yields (2.3).

Example 2.2.7. Let M C R" be open. Let 3 be a non-degenerate symmetric bilinear
form on R". For every p € M let ®, : T,M — R" the canonical isomorphism. Set
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2.2 Semi-Riemannian metrics

glp = ®;8. We check the smoothness of g in Cartesian coordinate, i.e., in the chart
0

r=id:U=M —V =M.
) . 9
o g ) - (@pﬁ)(@p7@p>
0 0
5<‘b<a7>‘b<a—

)
_ ﬁ@mb<§;p>”mb<é%p>>
= Blei,e)).

Consequently, the g;; are constant, hence C*°. In this manner, we can equip M with a
semi-Riemannian metric with arbitrary index.

0

,—
J
» Ox

Example 2.2.8. Let M C R"** be an n-dimensional submanifold. Then there exists a
canonical injective map ®, : T,M — R"*, defined by

. d
¢(0) = —cl=o

dt
equivalence class of the derivative of
curvec: (—g,e) - M c:(—e,€) — RFF
Then define g|, := ®(-,-), where (x,y) = Y.z’ is the usual Euclidean scalar
product, x = (z!,... 2" Ty = (y},...,y" )T, Since the Euclidean scalar product

is positive definite and ®,, is injective, we conclude that g, is also positive definite
for all p € M. The semi-Riemannian metric on M defined in this way is called first
fundamental form.

The charts of submanifolds correspond to local parametrizations of M, i.e. to maps
F:V — M with V C R" open, where

r=F 1. U=FV)=>V

is a chart of M. In addition, we have with p = x71(v):

0 6p>
8p>

gij(v) = 9%(@ p,@
) 0xi
)

19)
19,
)’%(@

- @) (5
F(U +t- 62‘)|t:0, i F(U +t- 6j)|t:0>

A

- < pQ§¢
< i

Sl
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2 Semi-Riemannian Geometry

— (G g5 w).

>, in particular, the g;; are smooth.

OF OF

Hence g;; = <ami7 o

Definition 2.2.9. A semi-Riemannian metric g, for which g|, is always positive de-
finite, is called Riemannian metric. A pair (M,g), consisting of a differentiable
manifold M and a (semi-)Riemannian metric g on M is called (semi-)Riemannian
manifold.

A semi-Riemannian metric g is called Lorentz metric, if g|, has always index 1. The
pair (M, g) is then called Lorentz manifold.

Example 2.2.10. The first fundamental form of a submanifold M C R"** is a Rieman-
nian metric. For example, for " C R™*! we call the first fundamental form the standard
metric ggq of S™.

We express the standard metric of S? in the coordinates given by stereographic projec-
tion from the “south pole” (—1,0,0). Recall from Example [[.1.4] that the inverse of this
chart map is given by

1

F:R>5S2cR3 Fa)=———
@) = TP

(4 — |||, 42).

One computes

OF 1
ort W(—16x1,4(4 — (2")? + (2%)%), —8z'2?),
OF 1
2% = A3 [epE 16 8 e A+ (@) - (@)).
Moreover,
_JOF OF\ _ 16
=N\ 921 ) ~ @+ [2]2)?

and similarly for the other g;;. The metric in these coordinates turns out to be

16 10
95) = A e (0 1) '
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2.2 Semi-Riemannian metrics

Example 2.2.11. Let M C R""! be open. The Minkowski scalar product ((-,-)) on R"*! has
index 1, where

(xy) = =2’ + 'y + -+ 2™y"
forx = (2% 2',...,2") and y = (v°,9',...,y"). If ®, : T,M — R""! is the canonical
isomorphism, we can define a Lorentz metric on M by

gMinklp = (I)p* {0

The Lorentz manifold (R"*!, gnsink) is called Minkowski space. The four-dimensional
Minkowski space is the mathematical model for spacetime in special relativity.

Example 2.2.12. We express the Euclidean metric geyc = dz' @ dz! + dz? ® dx? of R? in
polar coordinates. Here 2! and 22 are the Cartesian coordinates. With 2! = r cos ¢ and

x? = rsin p we then find:

Oxt Oxt

dit = Z—dr+=—dy = cospdr—rsingdy
or Oy
0x? Ox?
dz? = idr—i—ialap = singdr 4 rcospde.
or Oy
Thus
Jeucd = (cospdr —rsingpdp) ® (cospdr —rsingdy)
+(sindr + rcos p dp) @ (sin @ dr + r cos p dp)
= cos?pdr @ dr —rcosgsinpdr ® dp — rsin g cos o dp ® dr + r?sin® o dp @ dp
+sin? @ dr @ dr + sin(p)r cos p dr @ dp 4 7 cos psin p dp @ dr + 12 cos® pdp @ dyp
= drdr+ride®dp
and hence

< gZI"jolar>

Il
7N
O =
3,0
~_

This matrix tells us:

° % has length 1,

° % has length 7,

° o and % are orthogonal to each other

In Cartesian coordinates we have:

1 0
(giCjartes> — < 01 ) > 51

o
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2 Semi-Riemannian Geometry

Definition 2.2.13. Let (M, gps) and (N, gn) be semi-Riemannian manifolds. A local
diffeomorphism ¢ : M — N is called local isometry, if

dQD|p : (TpMa gM|p) - (Tcp(p)Na gN|go(p))
for all p € M is a linear isometry.

If a local isometry is also injective, that is, if it is a diffeomorphism, we call it an
isometry.

Definition 2.2.14. If ¢ : M — N is a local diffeomorphism and ¢ a semi-Riemannian
metric on N, then we call the semi-Riemannian metric ¢*g on M given by

(#*9p = (delp)* (9le));

the pullback of g. In other words, we have for £, € T),M:

(0 D p(€:n) = gle) (delp(E), dolp(n)).

Remark 2.2.15. The metric ¢*g is the unique semi-Riemannian metric on M, for which
@ is a local isometry.

Definition 2.2.16. Let (M, g) be a semi-Riemannian manifold. Then we call

Isom(M, g) := {¢ : M — M isometry}

the isometry group of M.

Remark 2.2.17. The set Isom(}, g) is a group with respect to composition of maps. The
neutral element is id ;.
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2.2 Semi-Riemannian metrics

Example 2.2.18. We look for the isometries of (R", geycl)- Let
:R" 5 R"  o(z)= Az +b,

be an affine map with A € O(n) and b € R™. Such a ¢ is called a Euclidean motion. We
check that every Euclidean motion is an isometry of (R", geua): Let @, : T,M — R”
be the canonical 1somorphlsm for ¢ = &, 1(X) € T,M this means that § = c( 0) where

c(t) = p+tX. Similarly, n = ®,1(Y) = (p 0) € T, M with &(t) = p + tY. We compute:
©" (Geuctlp) (§:1) = Geuatlp(dplp(§), dplp(n))
= (Pp(deplp(€)), p(deplp(

n)))
= (2 0 ¢)'(0)))
= (0 ), @p((A(p + tY) + ) (0)))
= (®p(Ap + b+ tAX)(0)), P, (Ap + b+ tAY) (0)))
= (AX,AY)

= (X,Y)
= (2p(£), Pp(n))
= Gena1 (&, 1)

p((p 0 ¢)(0)), Bp((p
p((A(p +1X) +b) (0

Hence ¢*(geucl|p) = geuct showing that ¢ is a local isometry. Since ¢ is bijective, it is an
isometry. Summarizing, we have shown

{Euclidean motions} C Isom(R", geyc1)-

We will see later that the inverse conclusion also holds; the isometries of (R", geyc1) are
precisely the Euclidean motions.

Example 2.2.19. To find isometries of Minkowski space (M, g) = (R""!, gpink) we de-
fine
O(n,1) :={A & Mat(n+ 1) x (n+1),R)| {(Ay, Az} = (i, 2)) ¥y, € R"+)
={AeMat((n+1) x (n+1),R)[A L1, A=1,}

where
-1 0 0
0 1
Il,n:
: . .0
o --- 0 1

Now affine transformations ¢ : R**! — R"*! (z) = Az + b with A € O(n,1) and
b € R*!, are called Poincaré transformations. The same discussion as for Euclidean
space shows

{Poincaré transformations} C Isom(R" ", grsini).
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2 Semi-Riemannian Geometry

Again, we will see later that equality holds; the isometries of Minkowski space are
precisely the Poincaré transformations.

Example 2.2.20. To find isometries of the sphere (M, g) = (5", gsta) let A € O(n + 1).
We set p := A|gn : S — S™. Let @, : T,S™ — R"*! be as in Example 228 Then the
diagram .

T,5n 2 sn

‘I’PJ lq)w(p)
A

n+1 n+1
R R

commutes because:

¢0) ——(po)(0) = (Aoc)(0)

I T

d d d
achzo A adt:e = E(A - ¢)|t=0

Therefore

std (do]p(€), dplp(n) = (P (delp(§))s Py (deolp(n)))
(

= )
= (AP (E), APy(n))

(®p(£), @p(n))
Gstd 5577)

This shows that ¢ is an isometry. Hence
O(n + 1) C Isom(S™, gstd)-

Again, it will turn out that equality holds.

2.3 Differentiation of vector fields

We know how to differentiate functions on a manifold. We also know what differenti-
able vector fields are. But: How do we differentiate a vector field? What is the differen-
tial of a vector field at a point in the manifold?

First attempt. Let M be a differentiable manifold and let p € M. Let £ € T, M and let 5
be a differentiable vector field on M. We try to define the derivative of 7 in the direction
&

To this extent, we choose a chart z : U — V on M with p € U.A We write { € T,M as
=508 aii , with ¢ € Rand n = > 1L i % where the 7/ are smooth functions
near z(p).
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2.3 Differentiation of vector fields

The first idea that comes to one’s mind is to differentiate the coefficient functions 7/ in
the direction &. This would yield the expression

— . O
ZE axz

1,7=1

0

J
axp

for the derivative of 7 in direction €.
Problem. This “definition” depends on the choice of chart x.

Example 2.3.1. Let M = R?. In polar coordinates (r, ¢) we set

0

Then the derivative of 7 in direction £ equals 0 because the coefficient functions 7’ are
constant. On the other hand, in Cartesian coordinates (z!, 2?) we get

For the derivative of n in direction £ we would then find

9 9 9 9 0 9
20 2 2 19
<x8x1+ a2>( )6m1+< Yot T a2 >( ) au

0 0 0
- — 1—— 2— = —_
IR T R “or 7 0

We see that the idea of simply differentiating the coefficient functions was to naive.
Since we do not know how to come up with a better definition we follow an axiomatic
approach similar to the concept of derivations, except that this time we differentiate
vector fields rather than functions.

Notation 2.3.2. Let M be a differentiable manifold and let ¥ € NU{oo}. For any open
subset U C M we put

C*(U, TM) := {C*-vector fields, defined on U}.

For p € M we set

[

= J C>UTM)
UCM open
with petU
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2 Semi-Riemannian Geometry

Now we list the properties that the derivative of vector fields should have. Differenti-
ation takes a tangent vector £ € T, M and a smooth vector field 1 defined near p and
gives us a tangent vector in 7),M as a result. Hence it is a map T,M x =2, — T,M.

Definition 2.3.3. Let (M, g) be a semi-Riemannian manifold and p € M. A map
V:T,M x Z, — T,M
is called Levi-Civita connection (at p), if the following holds:

(i) Locality
Forall { € T,M, foralln € C*°(U,TM) and for all U c U with p € U we have:

Ven = Ve(nlg)-
(ii) Linearity in the first argument
Forall &1,& € T,M, for all o, 5 € R and for all € £, we have:
Vagi+8eN = aVegn + BVen.

(iii) Additivity in the second argument

Forall { € T,M and for all 1,72 € Z, we have:
Ve(m +n2) = Vem + Venp.

(iv) Product rule I

Forall f € Cp°, forall n € £, and for all § € T),M we have:
Ve(f ) =0f -nlp+ f(p) - Ven.

(v) Product rule I
Forall { € T,M and for all 1,72 € E, we have:

deg(n1,m2) = glp(Vent, m2lp) + glp(mlp, Venz).

(vi) Torsion-freeness

For all charts 2 : U — V of M with p € U we have:
0 0

o | a7 o | A%
3a7 |, 027 547 |, 0T

\Y

for all 7 and j.
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2.3 Differentiation of vector fields

Remark 2.3.4
(1) From (i) and (iv) we get the R-linearity in the second argument. Let o, 8 € R:

Ve(am + Bn2) Ve(am) + Ve(Bn2)

dea mlp +aVe(m) + 0B m2lp + BVe(n2)
> 7
= aVe(m) + BVe(n2).

(2) If (i) holds in a chart z, then it also holds in every other chart y containing p.

9

B NP
v, 2 - v 9| 9
oo, Oy 5, (,; Oyl |, Ox* )
B L o2t o ot 2
= 2\ ayog| o T o), V| o
k=1 YoYlyp % Yoy o7l 0%
@ ~ 0%zF 0 " Oz oz 0
= 7 ok T v o | 5k
Zay Oy’ |y Ot kz_l 0y lymy 0¥ |y oatl, O

The first summand is symmetric in 7 and j due to Schwarz” Theorem. Concerning
the second summand we have:

Ox* Ozt 0 "L 9zF Ozt 0
kim1 P ) OV lyp)  aellp kim1 7Y Ty Y () ook, O
changeof __—" Z a“’”l_c v, i
indices k=1 oy v W lywy ol
Hence the second summand is also symmetric in 7 and j.
(3) In general, for non-coordinate fields £ and n we have
Ven # Vig.
As an example we can choose £ = % andnp=f- 8%1 with O¢ f # 0.
Definition 2.3.5. Let z : U — V be a chart. Write
Z rk 8k (2.4)
61‘7, x p

The T'}; are called Christoffel symbols.
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2 Semi-Riemannian Geometry

Remark 2.3.6. The Christoffel symbols determine V. Namely, let £ = Y"1, & a?ci »

T,M and = Y77, 1/ 52 € Z,. Then we compute:

v yvpl) & sev, (2
et | | 2 By 2|\ 9z
p 7j=1 2,7=1

(1) Zn:z 3?7j 9
N

ij=1 Oz z(p) 0

- Z§Z< i 7

ij=1 Oz z(p) 6

- Se(%, T

i,k=1 =

Remark 2.3.7. Torsion freeness is equivalent to the Christoffel symbols being symmet-

ric in the two lower indices:

Iy, =T%  foralli,j k.

Theorem 2.3.8

k
&rp

€

Let (M, g) be a semi-Riemannian manifold and let p € M. Then there is exactly one Levi-

Civita connection at p.

Proof. Uniqueness: Let x : U — V be a chart of M with p € U. We compute, using the

Einstein summation convention:

995 _ 90 (9 9
oxk ok I\ 0zt O

o 0 0
f’(V—%%) (a P

li=)

= Pfk@"glj‘i‘rfkj'gzl-

50

Vi )
oz
o 0
— L~

o 0
— lA- _— l
- sz g<awl’8xj>+rkj <a Z’@:N)




2.3 Differentiation of vector fields

Renaming the indices we get the equations:

dgii

ang = Féi'gzﬁ-lﬁj'gﬂ (2.6)
PO L S S AR S A 2.7)
]:’; ol g ik gk~ Gil .
i~ axf Tl - g1 + T - 9w (2.8)

Equation (2.6) — 2.7) + (2.8) together with the symmetry of the Christoffel symbols in
the lower indices yields:
9g9ij  0gik | Ogkj

ozk O + Oxt

Let (g¥); j—1...n be the inverse matrix of (gi;)i j=1,..n». This matrix exists because g|, is
non-degenerate. In other words, we have:

9" - gjk = 6.

Therefore

09ij  Ogik , Ogrj
oxk  OxJ ozt

>9jm =20 g - g™ = 2T} - 6" = 2T}

and hence

m_ L (09 Ogik  OGkj\ jm
M=o\ ok~ 9zd T 0xi )Y

Renaming indices (k — j,m — k,j — m) we obtain:

kLo ok (O9im | Ogjm  Ogij
by = 2 Z g oxI * dzt  dx™ 29)

m=1

Consequently, the Christoffel symbols are uniquely determined and hence V is
uniquely determined by the components of the semi-Riemannian metric and its first
derivatives.

Existence: Define Ffj by equation (2.9) and V by equation (2.5). Then conditions (), (i),
(i), and (vi) of the Levi-Civita connection are obvious. For the first product (iv) rule
we have:

(O - nF , b
Ve(fn) = ¢ (7(J(;$Z7)+fnjl“i3>@

[ Onk , 0 .0 0
ox T
= [-Ven+0:f-n
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2 Semi-Riemannian Geometry

We check the second product rule (@), using the Einstein summation convention and
occasional renaming of indices:

9 9(&,m) —9(Ve&m) — g€, Ven)

9 i (%i i ] i 577]‘ ]
= Ckw(gzjg ) — gi; C* <w + ¢ 1k> W — gi; & ¢ (% + nll‘{k>
= (H I g — g T — g3 €T,
=&yt (% —gi; Tl — ga Fég)

i, 7 1j 1 m 0Gim 0 m 0 i
@gwgk(gg Lo z( 9 9k 9k>

ozt~ 2859 _\ 9ok T ozt T gam
—=)m
J

1 0g; 0 9g;
~ g gml ( 9jm + Jkm g]k> )
6m

2 oxk oz orm

7

gk 95 1 (995  Ogr;  Ogiw\ 1 (9gji  Ogri _ Ogjk
e <8xk 2 <8xk T or T P 2 \9zF "0 ow

= 0. O

Remark 2.3.9. For any chart z : U — V on (M, g) the Christoffel symbols are smooth
functions

2 oz ot oxm

m=1

1 & A - i
Ffj:‘zgm’“-<agm+ag] —ag]>:V—>R.

Remark 2.3.10. Our naive ansatz to differentiate vector fields by simply differentiat-
ing the coefficient functions corresponds to formula (2.5) with Ffj = 0. The problem
was that this depends on the choice of coordinates. When we use formula (2.5) with
the correct definition (2.9) for the Christoffel symbols, then we get the uniquely deter-
mined Levi-Civita connection. In particular, this kind of differentiating vector fields is
independent of the choice of chart.

Note however, that the Levi-Civita connection depends on the semi-Riemannian met-
ric. This cannot only seen from (2.9) but also from the second product rule (¥) in Defi-
nition 2.3.3lwhich involves the metric. There is nothing we can do about this; different
semi-Riemannian metrics will in general lead to different Levi-Civita connections.

So the situation is somewhat curious: Differentiability and the derivative of a function
are well defined on a differentiable manifold. Differentiability of a vector field is also
well defined on a differentiable manifold. But in order to define the derivative of a
vector field we need a semi-Riemannian metric.
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2.3 Differentiation of vector fields

Definition 2.3.11. Let (M, g) be a semi-Riemannian manifold and let V be its Levi-
Civita connection. Letp € M, let { € T,M and let n € Z,. Then

v§’l7 € TpM

is also called the covariant derivative of 7 in direction &.

Example 2.3.12. Let (M,g) = (R?, geua) be the 2-dimensional Euclidean space. In
Cartesian coordinates z!, z? the gij = 0;; are constant. Therefore Ffj = 0. In this case,
covariant differentiation is indeed given by differentiation of the coordinate functions.
For example,

o 5 0 L 0
Voge = Veegen (< toisn)
0 d d 0 d 0
_ (29 19N, 29 [ 20 10\ 1, 9
B < Yo T 81‘2>( m)axl—i_( Vo T 8x2>(x)8x2
R S R 2
ozt D2 or

In polar coordinates r, ¢ we have

(9i5)(r; ) = < (1) 7?2 ) and  (¢7)(r,¢) = ( (1)

)

The Christoffel symbols with respect to polar coordinates are given by

- o

I ==(1-(0+0-0)+0-...) =0.

N |

and similarly
Fh = F%l = Fb = F%l = F%Q =0.

Moreover:
11 (Ogi2  Ogo2 Ogi2 1
2 _ 12 _ B 1
F12—F21—§<ﬁ<8¢+ or _&p +0-... = and I3 = —r.
Thus 5 5 5 )
I I‘l — P2 I
V% dy 29y t i o rar

Indeed, we obtained the same result for both computations, one in Cartesian and one
in polar coordinates.
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2 Semi-Riemannian Geometry

Remark 2.3.13. We defined V pointwise, i.e., as a map T,M x =, — T,M. We may also
consider V as a map
V:E(M)xZE(M)—E(M),

where Z(M) denotes the set of all smooth vector fields defined on all of /. Namely, we
put

(Ven) () :== Vep)n-

We know
Ve(aarm + aomz) = a1Ven + aaVen

for a1, 0 € R and
vf1£1+f2§277 = flv£177 + f2v§277

for f1, fo € C°°(M). This means that V¢n is C°°(M)-linear in £ but only R-linear in 7.

Remark 2.3.14. To compute V¢n with { = ¢(0) we only need to know 7 along the curve
c. Namely,

]:

p— .Z j_
> Ve <n aﬂ)

i,j=1
n ) j a n
el g

= S W o) o o + Z A0 (e(0) o

Jj=1 ,7,k=1

2.4 Vector fields along maps

Definition 2.4.1. Let M and N be differentiable manifolds and ¢ : N — M a map.
Then amap £ : N — T'M is called a vector field along ¢, if

T o€ = p.

holds. Here 7y : TM — M is the “footpoint map”.
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2.4 Vector fields along maps

Example 2.4.2
(1) Vector fields along curves. Let N = I C Rbe an openintervalandc=¢: N=1— M
be a curve.

Cc

v X

7

-~

=

An important special case is given by £(t) = ¢(t) := ¢:(0) where ¢(s) := c(t + s).
This is the velocity field of c.

C
N /\
A
7

Iy

T~

S

(2) If N = M and ¢ = id then a vector field along id is just a vector field in the usual
g )
sense.

(3) Let ¢ be constant, i.e., p(x) = p for all z € N. Then a vector field along ¢ is a map
N = T,M.

(4) Let ¢ be differentiable and let £ be a vector field on N. Then

p > dolp (5(1))) € TyppyM

is a vector field along ¢.

(5) If € is a vector field on M then
p = &(p(D))
is a vector field along ¢.

Definition 2.4.3. Let NV be a differentiable manifold and (1, g) a semi-Riemannian
manifold. Let ¢ : N — M be a differentiable map and n : N — T'M a differentiable
vector field along ¢. For p € N and { € T,N we define the covariant derivative
Ven € Ty )M as follows:

Choose a chart x : U — V of M with ¢(p) € U and write

n@ZZW@Q%

=1

v(q)
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2 Semi-Riemannian Geometry

with differentiable functions 7',...,n" defined on ¢~!(U). In addition, choose a
curve ¢ : (—e,e) — N with ¢(0) = £ and set

Ven = Z(dt(n OC|t0+Z77] Spoc‘to (x(QD(p))))axk%()
4,j=1 P

= Z (agn + Zn (m(so(p)))) % "

) e

Proposition 2.4.4

Let N be a differentiable manifold, (M, g) a semi-Riemannian manifold and ¢ : N — M a
differentiable map. Let n,m1, 12 be differentiable vector fields along ¢. Let o, 00 € R and
f + N — R be a differentiable function. Furthermore, let p € N and £,&1,&2 € T,N.

Then the covariant derivative V¢n is defined independently of the choice of chart x and the
choice of curve c with ¢(0) = £ and we have:

(i) If n is the form n = ¢ o p where ( is a differentiable vector field on M, then we have
Ven = Vagly(©)S-
(ii) Locality: If 1 and no coincide on a neighborhood of p, then Veny = Venp.
(iii) Linearity in the first argument:
Vargi+az6M = 1 Ve + a2Ve,.
(iv) Linearity in the second argument:
Ve(aam + aamz) = a1 Vem + aaVena.

(v) Product rule I:
Ve(f-n) = 0:f -n(p) + f(p)Ven.

(vi) Product rule II:
Aeg(m,m2) = 9luow) (Ven1, m2(p)) + gl (m(p), Veng).

(vii) Torsion freeness: For all charts y of N and all i,5 = 1,...,dim(N) we have:

9 d
vaiz de <(9 J) - v%d@ <0yi> '
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2.4 Vector fields along maps

Proof. The assertions follow directly from the definition and the corresponding state-
ments for the Levi-Civita connection. O

Notation 2.4.5. For local coordinates y on N we write

oyt P = Va%!pn = ; (8yl : +z]: oyt @7 (W) Ty (2(0(p)) | 5.5 )-
If N is one-dimensional, we also write

Vn _ Vi

ot dt’

Remark 2.4.6. For a vector field along a curve c : I — M we have the following formula
in local coordinates on M:

n

(1) = Z( +Z F’f((())))a‘zk

k=1

c(t)
In particular, for the velocity field we get

Zf(t)Z(é’“(t)Jch'i(t)-cﬁ(t Ffj(m(c(t)))) ai

k=1

c(t)

Example 2.4.7. Let (M, g) = (R", geuer) or (M, g) = (R", gmink). Then the g;; are con-
stant in Cartesian coordinates. Consequently, the Christoffel symbols with respect to
Cartesian coordinates vanish, Ffj =0.

Fora C'-curve ¢ : I — M and a C'-vector field £ along c with £(t) = Y7, /(¢ )55 |e(t)

we have:
Z &(t)
(t)

Hence, in this case, covariant differentiation just consists of differentiation of the coef-
ticient functions. Note however, that this is no longer true in other coordinate systems
such as polar coordinates.
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2 Semi-Riemannian Geometry

Example 2.4.8. In the Euclidean plane (M, g) = (R?, geye) we consider the circle line
c(t) = (cos(t),sin(t)) and its velocity field

+ cos(t) 9

E(t) = élt) = —sin(t) -

ot
In Cartesian coordinates we get by the previous example

\Y

\Y )
5 §(8) = = ¢é(t) = —cos(t)

__9
C(t) 87"

c(t) c(t) .

For the fun of it, let us also carry out the calculation in polar coordinates (r, ¢). Now
ct(t) =r(t) =1, 2(t) = p(t) = tand £(t) = % o ie., £4(t) = 0and &%(t) = 1. This
time there are no derivatives of the coefficients of £ but we have to take the Christoffel

symbols into account. Recall from Example 2.3.12] that there are three non-vanishing
Christoffel symbols for polar coordinates,

) 0
— sm(t) @

dal

I =T3 = %’ Ty = —.
Therefore we get
\V4 2 . . 1 0 2 9
% E(t) - z’jzz:l ¢ (t) §] (t) Fij (T’(t), SO(t)) E c(t) ! ijz—:l g (t) gj (t) Pij (r(t)7 SO(t)) % c(t)
. 1 1 0
= 20 (— (1) o » + (cl(t) & (t) =) + () €M) @> ER 0

0 0
= 1-1-(-1)=| +@©0-1-14+1-0-1) =—
arc(t) a@c(t)
_ _9
87“0(25)'

So indeed, we have obtained the same result.

2.5 Parallel transport

Definition 2.5.1. Let (M, g) be a semi-Riemannian manifold and ¢ : I — M be a
C'-curve. A C'-vector field ¢ along c is called parallel, if

Ve_
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2.5 Parallel transport

Example 2.5.2. Let (M, g) = (R", geuc1) OF (R, gmink)- In Cartesian coordinates, a vector
field £(t) = Y7, €(t) 35 |c(t) along a curve c is parallel if and only if &/(¢) = 0 for all

t € I,i.e., if and only if the &7 are constant.

Example 2.5.3. Let (M, g) = (R?, goyel)- Recall from Example 2.3.12] that the Christoffel
symbols in polar coordinates (r, ¢) are given by:

1
Iy =T} =T}, =T} =T3=0, T}=I3= - I3y =—r.

Thus £ = & 5; 4 +&%5; 22 - is parallel along a curve cif and only if
) zg
- 5188 ¢ claJrc2aaa +§26 +£2V claJrcga%
- e (e '%%%528 +6 (¢, + Ay

: . 0 0
_ <£1—6162£2>ar <£+ 1£+ 1£2> 5o

This is equivalent to:

1.2 2 N
§ —c =0, f+c—15 +§§ =0,

51 - 0 616'2 51
()= (% ) (&)

This is a system of linear first order ordinary differential equations for (¢!, £2).

that is

Proposition 2.5.4

Let (M, g) be a semi-Riemannian manifold
and ¢ : I — M bea Cl-curve and ty € 1.
Forany &y € T, M there exists exactly one
parallel vector field £ along c with £(to) = &o.
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2 Semi-Riemannian Geometry

Proof. Case 1: Let c¢(I) be contained in one chart and let x : U — V be such a chart.
Then the condition ¥¢ = 0 is equivalent to

n
fk:— Z (Ffjoxoc)c'ifj,
ij=1
which is a system of linear ordinary equations of first order. Hence there exists a unique
solution with initial condition

(gl(t(])a Tt agn(t(])) = (5(%’ co ,5(?)

Since the system is linear, the solution is defined on all of 1.

Case 2: Suppose c¢(!) is not contained in one chart.

Existence: The interval I can be open, closed or half-open. We restrict ourselves to open
intervals, the other cases being slightly simpler. Write I = (a,b) where —oo < a < b <
0o. Choose a < a; < tyg < b; < bwith a; — a and b; — b monotonically. Then ¢([a;, b;]) is
compact and can be covered by finitely many charts «; : Uy — Vi,...,zn : Uy — Vp.
W.l.o.g. we assume that U; N ¢([a1, b1]) is connected.

o

Not something like this!

W.lo.g. let c(tg) € Uj, otherwise renumber the charts. We solve the equation %f =0
as in Case 1 with {(tp) = & in U;.
If the solution is not defined on the whole of [a;,b;], we choose ¢; € (aj,b;) with
c(t1) € Uy N Us. Then we solve the equation in the chart z2 with the initial condition
&(t1), given by the previous solution.
Due to uniqueness in Case 1 both parallel vector fields coincide on U1 NUs,. After finitely
many steps we get a parallel vector field which is defined on [a;, b;].
The same holds true for the next compact subinterval [a2, b2] and we obtain a parallel
vector field on [ag, bo] which extends the one on [a1,b;]. By induction, we then find a
parallel vector field on every [a;, b;] extending the one on the smaller interval[a;_1, b;—1].
Since U, [ai, b;] = (a,b) we obtain a parallel vector field £ on (a, b) with £(to) = &.
Uniqueness: Let £ and ¢ be two parallel vector fields along ¢ with £(tg) = 3 (to) = &o.
Write I = Igooq U Ipaq Where
[good = {t el ’ §(t) = g(t)}
haa = {tell&(t)#E1)}
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2.5 Parallel transport

Since ¢ and ¢ are continuous, I, good 18 closed in I. For ¢y € Igooq chooseachartz : U — V

which contains ¢(¢1). By uniqueness in Case 1 we then have {(t) = £(t) forall ¢ € I with
c(t) € U. Therefore a neighborhood of ¢; is contained in I,04. Hence Igo04 is openin 1.
We have seen that 14,4 is open and closed in /. It is also non-empty because ¢y € Igo0d-

Since [ is connected, we have I = I,4,q and therefore {(t) = {(t) for all ¢ € I. O

Definition 2.5.5. Let M be a semi-Riemannian manifold and let ¢ : I — M be a
Cl-curve. Let tg,t; € I. The map

Pc,to,t1 :Tc(to)M — Tc(tl)M7
50 = g(tl)a

is called parallel transport along c. Here £(¢) is the parallel vector field along ¢ with
&(to) = So-

Proposition 2.5.6
Let M, ¢, to, and ty as in Definition [2.5.5land let t5 € 1. Then we have:

@) Peotr * (TeoyM, gleo)) = (Tew)yM, gle,)) is a linear isometry;

(b) PC,t(J,tQ = Leti,ta © Letoty-

Proof. (a) Let §o,mo € Te(yy) M. Let €, n the corresponding parallel vector fields along c.

Then p - -
@g(i,n) =g<a§,n> +g<§,@n> = 0.
—~ —~—

=0 =0
Therefore g(£,n) is constant, hence

9(Perto,1 (0)s Peto(m0)) = g(&(t1),n(t1))
= g(&(to),n(to))
= 9(&0,m0)-

This proves that parallel transport is a linear isometry.
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2 Semi-Riemannian Geometry

(b) is obvious. O

Remark 2.5.7. For {y € T,y M the parallel vector field § with {(tg) = & is given by

§(t) = Petotr(&0)-

We can reconstruct the Levi-Civita connection V from parallel transport:

Proposition 2.5.8
Let (M, g) be a semi-Riemannian manifold, let ¢ : I — M be a C'-curve, and let to € 1.
Then for every Ct-vector field & along c we get:

\Y% L Peiio (5(75)) — {(to)
55 . = lim .

t—to t— tO

Proof. Let e1(to), - -, en(to) be abasis of T, M. Let e1(t), ..., e,(t) be the correspond-
ing parallel vector fields along c.

By Proposition[2.5.61 @), we know that ey (t),...,en(t) form a basis of T,;) M for every
tel Write §(t) =37 & (t)e;(t). Then

=e;(to) ) |
Peyt,(&(1)) — E(to) o Z] 1§ ( ) Petto(e5(t)) — ijl & (to)e;(to)
t—to B t—tg
L] J(t
7=1
RN " E(to)e; (to)
j=1
On the other hand, we have

v V([
@ﬂto = E(de]) —o

Z (’5] to)ej(to) + & (to) Zﬁ ej’t0>

= 0
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2.6 Geodesics

n

= & (to)e;(to). O

J=1

We have the following scheme of geometric structures:

semi-Riemannian covariant parallel
metric N\ derivative V 7\ \u transport P

Remark 2.5.9. If¢ : M — M is alocal isometryandifc: I — Misa Cl-curve, consider
the image curve ¢ := 1) o c. Then we have for every C!-vector field ¢ along c:

¢ parallel along ¢ <= E:=dipot parallel along c.
In particular, the following diagram commutes:

P,t it
Tty M —222 s Ty )M

d¢|c(t0) | |d¢‘c(t1)

~ P57t07t1 ~
—_—_—

Té(to)M Té(tl)M

Remark 2.5.10. In general, parallel transport depends on the curve joining two given
points. This means, in general we have P.;,+, # P: s, if c and ¢ are two curves in M
with ¢(tg) = ¢é(so) and ¢(t1) = é(s1). In this respect, Euclidean space is not typical.

Example 2.5.11. Curve dependence of the parallel transport on (M, g) = (52, ggq) is
illustrated at: http://www.math.uiuc.edu/ ~Jms/java/dragsphere/

2.6 Geodesics

Definition 2.6.1. Let (M, g) be a semi-Riemannian manifold and ¢ : [a,b] — M a C*-
curve. Then we call

E[c] :=

N —

b
/ g(e(), é(2)) dt

the energy of c.
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Remark 2.6.2. If (M, g) is Riemannian, then g(¢,¢é) > 0 and therefore Efc] > 0 (and
equal to 0 if and only if ¢ is constant).

Question. Are there curves with minimal energy joining two given endpoints? More
generally, are there curves with “stationary energy”?

Definition 2.6.3. Let M be a differentiable manifold and ¢ : [a,b] — M a smooth
curve. A variation of c is a smooth map

c:(—¢,e) x[a,b] - M

with ¢(0,¢) = ¢(t) forall ¢ € [a, b]. If c(s,a) = c¢(a) and c(s,b) = ¢(b) for all s € (—¢,¢)
then we call ¢(s, t) a variation with fixed endpoints.

S

Jc

The vector field £(t) := s

(0,t) is called the variational vector field.

Remark 2.6.4. The variational vector field £ of a variation with fixed endpoints satisfies

€(a)=0 and £&(b)=0.

Theorem 2.6.5 (First variation of the energy)

Let (M, g) be a semi-Riemannian manifold, let ¢ : [a,b] — M be a smooth curve and let
c: (—e,¢e) x [a,b] — M be a variation of this curve. Let £ be the variational vector field.
Write cs(t) = ¢(s,t). Then

b
% E[Cs] ‘5:0 = = /g <£(t)7 % é(t)> dt + g(g(b)v C(b)) - g(f(a), é(a))'
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2.6 Geodesics

Proof. We compute:

b
1 V dc Oc Oc V dc
5 [ o (G 00.500) +a(Fr0.0.5.50.0)] @

Equality (*) holds because of torsion-freeness of the Levi-Civita connection. O

Corollary 2.6.6

If the variation has fixed endpoints then
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2 Semi-Riemannian Geometry

Lemma 2.6.7

Let ¢ : [a,b] — M be a smooth curve and & a smooth vector field along c. Then there exists a
variation c of ¢ with variational vector field . If {(a) = 0 and £(b) = 0, then we can choose
the variation with fixed endpoints.

Proof. a) We first consider the case that supp(¢) is contained in a chart z : U — V, ie.,
c(t) € U whenever (t) # 0.

We write {(t) = Zn:fj(t) % o and we set
j=1 c(t
(s 1) = {ml((é(f)v---vc"(t)) F5(E(0), . €"(0)). ) €U
| elt): o(t) ¢ U

Then we have for the corresponding variational vector field:

@(o,t) : = da’ @(o,t)
0s 0s

0l oc)
= "o (O

(I (t) + s&i(t))
0s

s=0

= &)
Hence the variation c has the variational vector field £&. Moreover, if £ vanishes at the
endpoints, then c has fixed endpoints.
b) In the general case, cover the compact set c([a,b]) with finitely many charts and
construct the variation piecewise. O

Remark 2.6.8. Later, when we have the Riemannian exponential map at our disposal,
we will be able to directly write down a suitable variation without usage of charts.
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Notation 2.6.9. Let M be a differentiable manifold and p,q € M. Then we set

Qpq(M) := {smooth curves ¢ : [a,b] — M with ¢(a) = pand ¢(b) = ¢}.

Corollary 2.6.10
Let (M, g) be a semi-Riemannian manifold and ¢ € Q,, ,(M). Then the following are equiv-
alent:

(i) The curve c is a “critical point” of the energy functional, i.e.,

d
£E[CSH _,=0

for all variations cs of c with fixed endpoints;

(ii) For all t we have

Proof. The implication “(ii)=(i)” is directly clear by Corollary[2.6.6l We show “(i)=-(ii)”.
Let [a,b] be the parameter interval of c. Assume there exists a ty € (a,b) with
% ¢(to) # 0. Then there exists a §y € Ty M with

g <£03 % é(to)> >0

because g is non-degenerate. Let ¢ be the parallel vector field along c with (o) = &o.
By continuity there exists an € > 0 such that (ty — ¢,%y +¢) C (a,b) and

(€0, 5 0) >0

holds for all t € (ty — &,typ + ). We choose a
smooth function g : [a,b] — R with o(¢) > 0 for
allt € (to — e,t0 + ) and p(t) = 0 otherwise.
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2 Semi-Riemannian Geometry

>0 forte (tg—e,tg+e)

Set £(t) := o(t)
v i) Y
D), c(t)) =ot)-g <£(t), pr C(t)> {: 0 otherwise

g(&()

£(t). Then we have:
t
By Lemma [2.6.7] we can choose a variation of ¢ with fixed endpoints and variational

vector field £. Then we have for this variation

L Bled], = - /b (60,57 60) de <o

ds
¢ = 0 on (a,b) and by continuity

v
O

which contradicts the assumption. Hence we have

also on the whole of [a, b].

Definition 2.6.11. A smooth curve ¢ with % ¢ = 01is called a geodesic.

In Cartesian coordinates

Example 2.6.12. Let (M’ g) = (Rn’geucl) or (Rn,gMink)'
zb, ..., 2" we have:
zézo — ¢=0,...,"=0
= J(t)=p +t’
< c(t) =p+tv.

Hence geodesics are straight lines, parametrized with constant speed.

Lemma 2.6.13
For any geodesic c the quantity g(¢, ¢) is constant.

Proof. We compute
$9(6.6) =2-9(
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2.6 Geodesics

Definition 2.6.14. A smooth curve cis called

parametrized by arc-length , if g(¢,¢) = 1,

parametrized by proper time , if g(¢,¢) = —1

parametrized proportional to arc-length , if g(¢,¢) = a > 0,

parametrized proportional proper time, if g(¢,¢) = —a < 0 and

a null curve, if g(¢,¢) = 0.

Theorem 2.6.15 (Existence and uniqueness of geodesics)
Let (M, g) be a semi-Riemannian manifold.

Forany p € M and § € T,M there exists an open
interval I with 0 € I and a geodesic ¢ : I — M with
¢(0) = pand ¢(0) = €. M

Ifc: I — Mandé: I — M are two such geodesics with ¢(0) = ¢(0) and ¢(0) = ¢(0), then
c and ¢ coincide on their common domain I N 1.

Proof. Inachartxz : U — V in p we consider the equation for a geodesic

v, kNS ok i

ac:() = '+ Z Fij(cl,...,c”) 2@ =0
1,j=1

fork=1,...,nand ¢® = 2zF o c. Thisis a system of ordinary differential equations of

second order. By the Theorem of Picard-Lindelof the we get the assertion. O

Remark 2.6.16. The system of differential equations is non-linear. Therefore we do not
have a-priori control over the maximal domain of definition I of the geodesic.

Remark 2.6.17. If ¢ : M — M is a local isometry, then

c:I— Misageodesic <= oc:I— M isageodesic.
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2 Semi-Riemannian Geometry

Example 2.6.18. Let M = (R?\ {0}, geuc) be the Euclidean plane with the origin re-
moved and let M = {(z,y,2) € R?|2% + 3 = 22/3, 2 < 0)} be a cone with the cone
tip removed and equipped with the first fundamental form g. Now ¢ : M — M,
Y(u,v) = m(zﬂ — 02, 2uv, —/3(u® + v?)), can be checked to be a local isometry.

Hence ¢ maps straight lines in M onto geodesics in M.

Definition 2.6.19. Let v : M — M be a diffeomorphism. Then we call

Fix(¢) == {p € M |¢(p) = p}

the fixed point set of .

Proposition 2.6.20
Let (M, g) be a semi-Riemannian manifold and 1 € Isom(M, g).
Then for any p € Fix(v) and any & € T,M with di|,(§) = & the geodesic ¢ : I — M with

c(0)=p and ¢(0)=¢

is entirely contained in Fix (1)), i.e., for all t € I we have c(t) € Fix(¢).

Proof. Set ¢(t) := 1 o ¢(t). Since v is an isometry, ¢ is also a geodesic. Furthermore, we
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have:

&(0) =1 (c(0)) = ¢(p) = p = ¢(0) and
&(0) = dil(0) (¢(0)) = diply(€) = € = &(0).
Applying the uniqueness part of Theorem[2.6.15 we get for all ¢ € I:

co(t) = é(t) = ¥(c()).
This means ¢(t) € Fix(¢)) for all ¢. O

Example 2.6.21

We use Proposition to determine the geodesics
of the sphere (5", gstq). Let p € S™ and £ € T),5". Let
E C R""! be the two-dimensional vector subspace
spanned by p and ®,(€). Let A : R"*1 — R be the
reflection about E. Then A € O(n + 1). Hence

= Algn € Isom(S", ggtq)-

Then Fix(A) = E and therefore Fix(¢)) = ENS™is a
great circle.

Proposition 2.6.20] implies that c¢(t) € E N S™ for all t. Since geodesics on a Rie-
mannian manifold are parametrized proportional to arc-length we seek an arc-length
parametrization of this great circle:

p(§)
c(t) = p-cos(at + P> sin(at).
0= coslal) + g gy s
We have to satisfy the initial conditions:
c¢(0) = p issatisfied.
d ®p(8)
—c(0) = P> .« and therefore o = |®,(&)]| = |¢].

Then we get % c(0) = ©,(¢), i.e., ¢(0) = & Thus the geodesic ¢ with initial conditions
¢(0) = pand ¢(0) = ¢ is given by

@)
€l

c(t) =p-cos (J&]t) + ~sin ([&]2).

Remark 2.6.22. Let (M, g) be a semi-Riemannian manifold and p € M. For { € T, M let
c¢ be the geodesic with

Cg(O):p and ég(O):f.
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For a € R set é(t) := c¢(at). Then

%é(t) = %(a . c'g(oaf)) =o? <% ég) (at) = 0.

Hence ¢ is also a geodesic. Since its initial conditions are

¢(0) = ¢¢(0) = p,
&(0) = a - é(0) = ag,

we conclude ¢ = cq¢. In particular, c¢(a) = cqe(1).

Definition 2.6.23. Let M be a semi-Riemannian manifold and p € M. For £ € T,M
set

exp,(€) = cg(1)

if the maximal domain of the geodesic ¢ contains 1. Furthermore, set
D, := {£ € T,M |1 is contained in the maximal domain of c¢}.

Then we call exp,, : D, — M the Riemannian exponential map (at the point p).

Remark 2.6.24
(1) By Remark 2.6.221 we know exp,(t - §) = ci(1) = ce(t). Thus t — exp,(t§) is the
geodesic with initial values p and &.

(2) Forany p € M we have expp(O) = p because ¢ is the constant curve cy(t) = p.

(3) Let £ € D). Then ¢ is defined on [0,1]. Let
0 < o < 1. From ce(t) = ce(at) we see that N
Coe is defined on [0,1] > [0,1]. Therefore
af € D,. This shows that D, is star-shaped

with respect to 0 € T, M. T,M

p

4) SetD := U,cpy Dp C TM and exp : D — M, exp({) = expyg)(§). The theory of
ordinary differential equations implies that D is open and that exp is a smooth map
(smooth dependence of solutions of the initial values). In particular, D, = DNT,M
is open in T}, M.
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2.6 Geodesics

Example 2.6.25
(1) Let (M, g) = (R™, gouc1) OF (R™, gmink)- Then we have:

expy(§) =p+1-@p(&) =p+ p(¢).
Here D, = T, R".

(2) Let (M, g) = (R?\ {0}, geuct)- Then

Dp:TpM\{_t'q)p_l(p)‘tZI}'

(3) Let (M,g) = (5™, gsta). Then we have D, =
T,M and

@, (8)
€l

exp, (&) = p - cos (|¢]) + - sin ([|€])-

Lemma 2.6.26
The differential of the map exp,, : Dy — M at 0 is given by the canonical isomorphism

dexpp ’0 = CI)() g T()Dp = T()TpM — TpM.

Proof. Let & € T,M. Then we have:

dexp,, ‘0((1)071(5)) = dexp,, |0 (% (t£)|t:0> = % epr(t£)|t=0 =& O

In the literature Lemma 2.6.26]is sometimes formulated slightly imprecisely as follows

idTpM = dexpp |0 : TpM — TpM.

Corollary 2.6.27
For p € M there exists an open neighborhood V,, C D, C T),M of 0, such that

exp, v, : Vp — exp,(Vp) =: Up
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2 Semi-Riemannian Geometry

is a diffeomorphism.

Proof. By Lemma [2.6.26 d exp,, |o is invertible. The inverse function theorem yields the
claim. O

Remark 2.6.28. In general, exp,, : D, — exp,(D,) C M isnot a diffeomorphism because
exp,, is not injective in general. Moreover, d exp,, |¢ is not necessarily invertible for £ # 0.

Example 2.6.29. Let (M, g) = (S™, gsta)- For p € S™ we have D, = T,M and

@, (&)

T,5"
0§

exp,(€) =p-cos ([¢]) + -sin (J&])-

eT,M =
In particular, for any £ € T,M with || = = {€ pM| |l =7}

we have

exp,(§) = p - cos(m) = —p.
For £ € T), M with | = 7 the differential d exp,, |¢ has the (n — 1)-dimensional kernel

{n € TeTpS™ [ @e(n) L &

Now we construct coordinates which are well adapted to the geometry and to this end
we choose a generalized orthonormal basis Ei, ..., E, of T,,M regarding g|,, that is

g’p(EzﬁEj) = &; 5ij, E; € {j:l},

n

We get a linear isomorphism A : R* — T,M, (a!,...,a") — 3 o'E;.

=1
TMDV, —22 .« M
p p ~ p
o4 /
R" SV,

We put V, := A7!'(V,). Then exp,0A : V, — U, is a diffeomorphism. Set
x := (exp,0A)~". Thenz : U, — V, is a chart.
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2.6 Geodesics

Definition 2.6.30. The coordinates we just defined are called Riemannian normal
coordinates around the point p.

In which sense are these coordinates well adapted to the geometry?

Proposition 2.6.31

Let (M, g) be a semi-Riemannian manifold and p € M. Let g;; : V,, — R be the metric
coefficients and Ffj : Vp — R be the Christoffel symbols in Riemannian normal coordinates
around p. Then we have:

z(p) =0, gi;(0) =e;d;, T(0)=0.

Proof. a) Clearly, we have z(p) = A~} (expp_l(p)) = A~1(0) =0.
b) Letes,...,e, be the standard basis of R". Then
gij(o) = glp (dx |0 e;),dr” |p(€j))
= glp(d(exp,0A) Io e;), d(exp, 0A)o(e:))

= glp dexp, lo(E i), dexp, lo(E ))
L
9lp(Ei, Ej)

= ) 62]
¢) Letv = (v',...,0") € R™ Then ¢(t) = 27 '(tv) = exp,(tAv) is a geodesic with

c(0) = p and ¢(0) = Av. In Riemannian normal coordinates the equation for a
geodesic is in this case

+ Y TE( ), M) ) - ().

1,j=1

Here c*(t) = 2%(c(t)) = tv*, ¢*(¢) = v* and & (t) = 0. For t = 0 we get

n
0=0+ ZF%(O,...,O)-vi-vj.

ij=1
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2 Semi-Riemannian Geometry

For each k we define a bilinear form 5% on R” by 8*(y, 2) := > oij=1 Fﬁj(()) Y 2.

These bilinear forms are symmetric because:

Bz y) = D TH0) 2y = TH0) 2 y'= Y TH(0)y' 2/ = By, 2).

ij=1 / ji=1 / ij=1

Exchanging v free of
indices torsion

Since we know that 5*(v,v) = 0 for all v € R", polarization yields 3*(y,z) = 0 for
all y, z € R™. This means Ffj (0) =0foralli,j,k.

straight lines in R" thro
T,M
/ewlesic

in M
through p

Example 2.6.32. Let (M, g9) = (an eucl) OT (an gmink) and p € M. Choose
A = @, = canonical isomorphism R" — T},R".

Then we have expp(Av) = p + v, thus Riemannian normal coordinates around p are
given by
z:R" = R" x(q) =q—p.

Up to translation by —p, Riemannian normal coordinates coincide with Cartesian coor-
dinates.

Corollary 2.6.33
In Riemannian normal coordinates we have for the Taylor expansion of g¢;; : V, — R

around 0:
gij(x) = &i 65 + O(|=[*).
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2.6 Geodesics

Proof. Expanding g;; into a Taylor series at 0 yields

9ii () = gi;(0 +Z g” +0([]?).

In the proof of Theorem [2.3.§ we found

%051 (0) = 37 (1hi(0) 015(0) + T} (0) 0a0))

=1

which is zero in our situation because the Christoffel symbols vanish at 0.
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3 Curvature

We now come to one of the central concepts of differential geometry, that of curvature.
We will see that there are various inequivalent notions of curvature. We start with the
most basic one.

3.1 The Riemannian curvature tensor

Definition 3.1.1. Let (M, g) be a semi-Riemannian manifold and p € M.
Let & € T,M and n,{ € £,(M). Then we have V, ¢ € ZE,(M) and

V2 ,¢ = VeVl = Vynl € T,M

is called the second covariant derivative of ( in the direction £ and 7.

Lemma 3.1.2
The sec~ond covariant derivative ngg depends on n only via n|,, i.e., if n,7 € E,(M) with
Nlp = 7lp then ) )

Vent = Vet

Proof. We choose Riemannian normal coordinates x around p. In these coordinates we
write (using the Einstein summation convention) the vector fields locally as:

0 0 0
— _ k9

g=¢

Since the Christoffel symbols vanish at 0 we get

-0 O’ d
i 2 ) — g <
) (77 8xj> ¢ oz’ © oz |,

Vgnzv

i 0
g ozt
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3 Curvature

and therefore

;o v 0 o ack D
6wi(0)v%p << Oxk > ¢ &rl( )axﬂ( ) Oxk p' (1)
Moreover, i
0 ¢ 0
— k_ Y ) _ kprm Y
Vit = Vi 2, ( axk> = (axm FHS Fﬂ"faxm>
and hence (again using that the Christoffel symbols vanish)
VeVt = Ve < 9ai 0k T ij%)
Lo ack 0 i 0%k 0 i el i 0
=GR 0550 | TEVO)5550 5| +EPOSTEO |
(3.2)

Subtracting (3.1) from (3.2) we see that the terms containing a derivative of the 7’ cancel
and we are left with

92¢k k
2 _ i,.7 C i,.7 m 8Fzm 9
V¢ = €0 g 0) + €V OO0 | 63)
This expression depends on 7 only via the 77 (0) which are the coefficients of 7). O

Consequence. The express ngc is well defined for £, € T, M and ¢ € =,,.

Lemma 3.1.4
For&,me T,Mand ( € Z,(M)

R(&,n)¢ := VE,¢ — Vi€

depends only on ¢ via C|,. Thus R(§,m)¢ € T,M is well defined for §,m,( € T,M.

Proof. Again we choose Riemann normal coordinates around p and recall (3.3):

) . o2k afl?m 9
V2,0 = €0 (0 ( e (0) + (7 (0) <0>> s

p
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3.1 The Riemannian curvature tensor

Relabeling summation indices and using the Schwarz theorem we get

R(&n)¢
‘ ' ' ‘ 2k ork
- (g(o)nﬂ(()) —gﬂ(ow(o)) < aiigwj (0) +¢™(0) 25 (0)> %
k

‘ ' 92k 92¢k or: o OTE 0
= £"(0)7’(0) ((%igﬂ (0) - 8xjgxi (0) +¢™(0)5(0) = ¢ (O)W(OO 9ok
p
4 . ork ork o
=§Z(0)77](0)Cm(0)< i (0) = 5 (0)> ok O
p

Definition 3.1.5. The map

R:T,M x T,M x T,M — T,M
&n¢) — R(En)¢

is called the Riemann curvature tensor at the point p.

Representation in local coordinates.
Let x : U — V be a chart on M. Then R is determined on U by smooth functions
Rﬁcij : V. — R, defined by

9 0\ 0 ., 0
R (37 a7> 5af = 2 Rkt (34)

As we have already seen, we have in Riemann normal coordinates:

oTL Tl
l _ Jk . ik

Remark 3.1.6. One can check (not difficult but tedious) that we have in arbitrary coor-
dinates

ort, o n
Rﬁcij = axji - axzf + Z( erfnz —FZ’éanj)

m=1

In particular, if the curvature tensor R : T,M x T,M x T,M — T, M does not vanish at
the point p, then there does not exist a chart containing p for which Ffj =0.
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3 Curvature

Proposition 3.1.7 (Symmetries of the curvature tensor)
Let (M, g) be a semi-Riemannian manifold, p € M and &,n,(,v € T,M. Then we have:

(1) R:T,M x T,M x T,M — T,M is trilinear;

(3) g|p(R(€a 77)() V) = _g|p(R(£a 77)% C)/
(4) First Bianchi-identity:
R(&n)¢ + R(n, Q& + R(C, &) =

(5) glp(R(&,m)C,v) = glp(R(¢,v)E,n).

Proof.

(1) is obvious because VEWC is already R-linear in ¢, n and (.
(2) is also clear by definition.

(3) We choose Riemannian normal coordinates around p and consider the special case

¢= 0 -2 ¢= o v= 9
Then we find
0 0 0 0
g|p (R(gﬂn)g’ V) - g|p <R (% 5 % ) @ p’ @ p)

0
= <Z Rk@] axm' ) @ p)
0 0
- ZRI{:Z] g‘P <8xm‘ 7@ )
p p
- ngl Rk@] )

From the proof of Theorem 2.3.8 we recall

A "

m=1
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3.1 The Riemannian curvature tensor

and thus, in Riemannian normal coordinates,

P95 oy N ory ory:
prrmiC i mz (gm](o) a5t (0) +gml(0)W(0)> ,

Thus

2. . 2.,
O (0) - 500 0)

~ 9zFod! dzldxk
Y o oL oL oLij
= ,;1 9mj (0) 72 (0) + goni (0) -7 (0) = gim; (0) 53 (0) — gm(mﬁ(m)

3

=3 (s OVRELO0) + 4O R (0))
1

m

Renaming the indices via [ — i, k — j, i — k, j — [ leads to
0= 3" (9m(O)B](0) + i (OB (0))
m=1
and therefore

Z gml Rk;]j Z gmk Rlzj

This proves the assertion for coordinate flelds &, n, ¢, v of Riemannian normal coor-
dinates.

By multilinearity the assertion follows for general £, n, ¢ and v.
(4) The first Bianchi-identity is equivalent to
szg + Réjk + Ré’ki =0.
We check this in Riemann normal coordinates:
Rk‘z]( )+ Rz]k( )+ Ré‘ki(o)

arl rl/ ar,// arl orY, ot
af aﬁ Mjg m”a% 0)= ai/

=0.
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3 Curvature

(5) Proof by an explicit calculation:

0 2 gl (R3HCIE v) + gl BEETT V) + glo(R(E,m)C, v)

+ glp(RETD, ) + gl p(BEFTC, ) + glp (R(v, O, m)
+ 9p(BEAT, C) + glp BT C) + glp(R(n, §)v, €)
+ glp R €) + gl (B, §) + glp (R(C, v)n, €)

g1, (R(Em)C,v) + 2415 (R(C, v)m, €)
= 2(glp(R(&,m)¢,v) — glp(R(C,v)E,m))

Example 3.1.8. Let (M, g) = (R™, goue) OF (R”, gpink )- In Cartesian coordinates we have
Ffj = 0. Thus we get Rﬁmj = 0 for all 4, j, k,l and therefore R = 0.

Definition 3.1.9. A semi-Riemannian manifold with R = 0 is called flat.

Warning. In the literature there are two different sign conventions for R: For example,
our R is the negative of the curvature tensor as defined in [ONS83].

Lemma3.1.11 3
Let (M, g) and (M, g) be semi-Riemannian manifolds and «) : M — M a local isometry. Let

p € M. Then the curvature tensors R of M at p and R of M at Y(p) are related by:

dyly (R(E,1)C) = R(dlp(€), dply(n)) dly(C)

forall £,m,¢ € T,M.

Proof. Letz : U — V be a chart on M with p € U. By making U smaller if necessary we
can assume that ¢ : U — U := ¢(U) is a diffeomorphism. Then & := z o v LU=V
is a chart on M.
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3.1 The Riemannian curvature tensor

Since 1 is a local isometry, it follows that g;; = g;; : V — R, where the g;; are the
components of g w.r.t. z and the g;; are the components of § w.r.t. Z. Therefore the
Christoffel symbols coincide, I‘k = Ff], hence so do the components of the curvature
_ Rl

tensors, R} 1ij- From (3.4) we conclude

kij —

d¢<R<%a%>axk> ZRW < )

= (a0 ()40 (55) ) ()

This proves the lemma for the coordinate basis tangent vector 88
it follows for all tangent vectors. O

Alternatively one can define the curvature tensor as a multilinear map R : T,M x T, M x
T,M x T,M — R by

R(é, m, ¢, V) = g(R(ﬁ, U)C, 7/) .

In this version, R is known as the Riemannian (4, 0)-curvature tensor. In local coordinates
x: U — V around p, we define R;;; : V — R by
p)

0

Rl-jkl(m(p)) =R (axz 7 0

j )
&’Up

9
oxk p’

9
ox!

Then we have
Rijk =y Ry
_ r(9 9\9 9
- 9 oxk’ ozl | Oxt’ OxJ
° m 0 0
= g <mZ:1 R —(%cm’ @)

S~ o 0
- Y mhe(5g0)

m=1

n
= Z Im;j Rigi
m=1
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3 Curvature

Hence we have

n
Rijw = Y gmi BRIy
m=1

We have lowered the upper index. On the other hand we have

n n
l l [
Ry =D 0mBili= Y 9"9m R,
m=1

a,m=1

hence

n
l l
Ry = Zga Ryaij
a=1

In this case we have raised the index.

Proposition 3.1.12
Let (M, g) be a semi-Riemannian manifold. In Riemannian normal coordinates we have:

1 n
9ij (x) = € 0ij + 5 > Ryn(0)Fa! + O(|=)?).
k,l=1

Proof. We already know that g;; (z) = &;d;; + O (|=|*) by Corollary 2.6.33. In the fol-
lowing we will use the Einstein summation convention and the following abbreviations

02 f

of
f,k = == and f,ke = W

oxk

for the first and the second partial derivatives. In the proof of Theorem 2.3.8 we have
seen that

Gijk = Ui 9mj + Ui Gmi -

We differentiate this equation with respect to z!, evaluate at 0 and use that the Christof-
fel symbols vanish at 0:

ijke (0) = T'yi 4 (0) - gmyj (0) + T3 4 (0) gma (0) (3.5)

Claim:
P?J‘,é (0) + P?i,j (0) + P?@,z (0) =0. (3.6)
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3.1 The Riemannian curvature tensor

Proof of the claim: In normal coordinates the straight lines ¢ — ¢ - = give geodesics. The
equation for geodesics then looks like:

OZI’%(t-x)xixj.

We differentiate this with respect to ¢ and evaluate at ¢ = 0:

d o
0= — I’fj (tx) z'e! =TF

(0) 2fatad .
dt 0 ZJ,Z( )

Thus we have for every k£ a polynomial of third degree in =z, namely
P¥(x) =T}, ,(0)a’¢/2", which vanished identically. ~Thus for every monomial
z*2P17 the sum of coefficients T% ,(0) with z’a/2’ = 2°2°27 has to vanish. The
six permutations of the three lower indices yield

P?j,é (0) + PZJ (0) + F?Z,i (0) + F?i,z (0) + F?E,j (0) + F]gj,i (0) = 0.

The symmetry of the Christoffel symbols in their two lower indices implies the claim.[]
From Riij (0) = Ff,“ (0) — ka’j (0) we conclude:

Rieij (0) = (T (0) =T, (0)) gme (0)
G _ (T4 (0) + Ty 5 (0) +Tj 5 (0))
= ij.k ki j ik, j gme (0)
= — (T35 (0) + 207 5 (0)) gme (0) - (37)
Thus we have:
2R;1.j0 (0) ¥ z* Prop 517 (= Rkije (0) — Rejiys (0)) ¥zt
BD (m (0)+ 207 (0)) g (0) 22
+ (T3 ¢ (0) + 2T% 1. (0)) gmy (0) ¥ 2
(;) (7 1, (0) + 2T, (0)) grmi (0) 2 2*
+ (T, (0) + 2T'%2 1 (0)) gmj (0) 22
3.3

(95,0 (0) + 2gij.ke (0)) - 22t
= 3gijke (0) - ¥zt .

At equality (x) we renamed the summation parameter k to ¢ and vice versa. Thus we
get for the second term in the Taylor expansion

1 1
3 Gij ke (0) 2Pt = 3 Ri1j¢ (0) R
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3 Curvature

3.2 Sectional curvature

The Riemannian curvature tensor contains the full curvature information of a Rieman-
nian manifold but for many applications other curvature entities are more suitable. We
will introduce the sectional curvature, Ricci curvature and scalar curvature in this and
the following sections.

We start with some linear algebra. Let V' be a finite dimensional real vector space with
a non-degenerate symmetric bilinear form (-, ). Later we will apply this to V' = T,,M

and <'7 > = g|p('7 )

Definition 3.2.1. A subvector space U C V is called non-degenerate, if
(,+) luxv : U x U — R is a non-degenerate bilinear form on U. We define:

Gi(V,(-,+)) := {k-dimensional, non-degenerate subvector spaces of V }.

Note that every subvector space is non-degenerate if (-, -) is definite. We set

Q:VxV =R, QE&n) =& mn) — (&)

Lemma 3.2.2
For two-dimensional subvector spaces E C V' the following assertions are equivalent:

(i) E € Gao(V, ()
(ii) there exists a basis £, of E with Q(&,n) # 0;
(iii) for all basis &, n of E we have Q(&,n) # 0.

Proof. With respect to any basis £, of E, the bilinear form (-, ) | pxx is represented by

the matrix
Ao, <<§, & §>> |
&) ()
Then we have Q(&,7) = det A¢ ,, which proves the lemma. O
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3.2 Sectional curvature

Remark 3.2.3
(a) If (-, ) is positive definite, then

Vv Q(&,m) = area of the parallelogram spanned by ¢ and 7.

(b) The two-dimensional subvector space £ C V is degenerate if and only if there exists
a basis £, n of E with (§,£) = ({,n) = 0. Namely,

1"

<" Q(&,m) = (£,€) (n,m) — (&m)? =0.

~—— ——
=0 =0
“=": Let E be degenerate, i.e., (-,-)|gxg is degenerate. Then there exists a
¢ € E\ {0} with (¢,({) = 0 for all ( € E. Now complete £ by some 7 to
a basis of E. a
Example 3.2.4

Let V = R3 with the Minkowski product

Consider the lightcone

(& ==+ &' + 02

C:={£ e RP\ {0}] (& &) =0}

Then the plane E C R3 is degenerate if and only if
E =T,C for some p € C.
Namely, assume ¢ : (—¢,e) — C is a smooth curve with ¢(0) = p and ¢(0) = €. Then we

have:

=

{(c(t),c() =0 Yte(—ec¢)
0=, (e(t), ct))) = 2 (¢(0), ¢(0))) = 2 (&, p)
T,C C p*, where both are two-dimensional subvector spaces of R3
T,C =pt

for £ = p and any 7 € T,,C which is not a multiple of £ we obtain a basis of 7),C
with (¢, &) = (&) =0

T,C is degenerate.

Conversely, if E is degenerate, then we choose a basis &,n of E such that ((¢,&)) =
{&,m) = 0. We put p := £. Clearly p € C. Now we have E C pt = T,,C. Since both E
and T,,C are two-dimensional we conclude £ = T,,C. 0
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3 Curvature

degenerate non-degenerate non-degenerate
(indefinite) (definite)

Lemma 3.2.5
Let V' be a finite-dimensional real vector space with non-degenerate symmetric bilinear

form (-,-). Let R : V x V x V x V — R be multilinear with
R(Ea m, Ca V) = _R(n’ Ea Ca V) = _R(E’ n,v, C)
forall§,m,C,v € V. Then for E € G2(V, (-, -)) and any basis £, of E the expression

_ R(&,1,1,6)
K(B) = =0

does not depend on the choice of the basis £, of E, but only on E itself.

Proof. Let 1, v be another basis of E with p1 = a& + bnp and v = £ + dn. Then we have:
R(u,v,v, 1) = R(a& + bn, € + dn, c€ + dn, a& + bn)
= adcb - R(&,1,€,m) + adda - R(&,1,71,§) + beeh - R(n, €, €,m)
+ beda - R(n, &, 1, &)
= ( — abed + a®d® + b2 — abcd) -R(&,m,m,€)
= (ad — be)* - R(&, 7,1, )
Themap R; : V x V xV x V = R, defined by
R1(&n, ¢ v) i= (&) (0,0) — (£, ¢) (n,v)
has all the symmetries of the curvature tensor as in Proposition[3.1.7l Hence we get

Ri(u,v,v, 1) = (ad — be)® Ra(€,1,1,€) . (3.9)
e e e
= Q(u,v) =Q(&,n)

(3.8)

90



3.2 Sectional curvature

Dividing (3.8) by (3.9) proves the lemma. O

Set Go(M, g) == | ] G2(T,M, gl).
peEM

Definition 3.2.6. The function K : Ga(MM, g) — R, defined by

R(&,1,1,8)
Q&)

where &, 7 is a basis of F, is called sectional curvature of (M, g). Here R is the Rie-
mannian (4, 0)-curvature tensor.

K(E) =

Remark 3.2.7. The sectional curvature is only defined for manifolds of dimension at
least 2. If dim(M) = 1, then R(,7,(,v) = 0 for all ,n,(,v € T, M due to the skew-
symmetry in £ and 7.

Definition 3.2.8. If (M, g) is a two-dimensional semi-Riemannian manifold, then we
call
K:M—R, K(p):=KT,M)

the Gauf§ curvature of M.

Remark 3.2.9. The sectional curvature determines the curvature tensor, as can be seen
by

6R(E,n.Cv) = K(E+vn+QQUE+vn+() —Kn+r,{+ QN +r.§+()

—K(n+QQEN+ ) — K0, +v)Q(n,+v)
K(C,§+v)Q((,E+v) — K(v,n+ QQ((v,n+ ()
K& n+v)QEn+v)+Kn.(+&Qn,(+&)
K((n+v)Q(Cn+v)+ K, + Qv+ ()
K(£, QR ¢) + K(n,v)Q(n,v) — K(&v)Q(&,v) — K(n,()Q(n, ()
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3 Curvature

for all ¢,m,(,v € T,M, for which the corresponding sectional curvatures are
defined.  The set of quadruples (&, n,(,v), that satisfies this, is open and
dense in T,M x T,M x T,M x T,M. By continuity this determines R on all of
TyM x T,M x T,M x T, M.

Special case: If K(E) only depends on p but not on the particular plane £ C T),M (satis-
fied automatically if dim(M) = 2, but not in general if dim(M) > 3), then:

R(&,m. ¢ v) = K(p) ((n,¢) (&v) = (£,C) (n,v) ).

Moreover, we always have: K =0 < R =0.

3.3 Ricci- and scalar curvature

The Riemann curvature tensor and sectional curvature can be computed from one an-
other. They contain the same amount of information. Both are rather complicated ob-
jects. In this section we introduce two simplified curvature concepts which however
contain less information than the full curvature tensor.

Let (M, g) be a semi-Riemannian manifold and p € M. The Riemann curvature tensor
at the point p € M is a multilinear map

R:T,M x T,M x T,M — T,M.

For fixed &, n € T,,M we get a linear map
R(§7 )77 : TpM — TpM7 C = R(§7 C)T/

Definition 3.3.1. The map ric: T, M x T,M — R,
I'lC(f, 77) = _tr(R(fa )77) = tr(R(7§)77)

is called the Ricci curvature at the point p.

Remark 3.3.2. Let V' be a n-dimensional R-vector space with non-degenerate symmet-
ric bilinear form g and Ei, ..., E, be a generalized orthonormal basis of (V, g), that is
9(E;, Ej) = €;0; ; with ¢; = £1. Then for every endomorphism A : V' — 1V we have

tr(A) =Y & g(AE), E)). (3.10)
i=1
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3.3 Ricci- and scalar curvature

Why? If we define w; : V' — R by w;(§) :=¢; - g(§, E;) then wy, ..., wy, is the dual basis
of V*to F4, ..., E,. Hence

= Zwi(A(Ei)) = Zﬁi - 9(A(Ey), E;).
i=1 i=1

The local description of Ricci curvature is similar to that of the semi-Riemannian metric
itself: For any chart x : U — V of M we define the functions
)

I'iCZ'j V- R, I‘iCij(JC(p)) = ric< %‘ ) %
p

Lemma 3.3.3 (Properties of the Ricci curvature)
(i) The map ric is bilinear and symmetric on T, M.

(ii) For any generalized orthonormal basis Er, . .., E, of (T, M, g|,) we have:

ric é-a Zgz a s 7] )

(iii) We have: ric;; = Z Rzkj

Proof. (i) Bilinearity of ric follows directly from trilinearity of R. We show symmetry
of ric:

ric(n,§) = Zé‘z Ey)E;¢€)

Prop.

EEZ Zez EZag m, )

@0 Zei . g(R(g, E,)E;, 77)
i=1

= ric(§,n).
(ii) is clear from (3.10).
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3 Curvature

(iii) We fix 7 and j and we have ric;; = ric (Bx“ axj) = tr (awz ) C) am) W.r.t.
the basis %, e am" the endomorphism ¢ — —R ) 7 has the matrix rep-
resentation

! !
(_Rjz'k)k‘l - (Rjki)k‘l
Thus we get that ric;; = >~;_, RY,, and because of (i) we have ric;; = ric;;, which
yields the assertion. O

We defined Ricci curvature using the Riemann curvature tensor. Since the curvature
tensor and sectional curvature contain the same information, Ricci curvature should
also be computable in terms of sectional curvature. Indeed, Ricci curvature can can be
computed by averaging the sectional curvature of certain planes.

Lemma 3.3.4
Let (M, g) be a semi-Riemannian manifold and p € M. If ¢ € T, M with g(§,&) # 0 and if
Es, ..., E, is a generalized orthonormal basis of £ L then
n Es
rie(¢,€) = g(&,€) - ) K(span{¢, Ej})
j=2
S 3
This is essentially the
mean value of K on all
planes containing &.
Es

Proof. W.lLo.g. let ¢g(¢,&) = £1. Write ¢ =: E;. Then E,..., E, forms a generalized
orthonormal basis of T,,M. Therefore

ric 5 5 Zg EzaE (gaEz)EZag)
- Zg(EZ-, Ei)-g(R(& Ei)E;,€)

Zg E;, E;) - K (span{¢, E;}) - (9(¢,€)g(E;, Ey) g(f))

=2
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3.3 Ricci- and scalar curvature

Remark 3.3.5. Lemma[3.3.4lexpresses ric(¢, §) in terms of sectional curvatures provided
g(§,€) # 0. Since g is non-degenerate the set of vectors £ € T,M with g(£,&) # 0is
dense in T),M. By continuity, ric(¢, §) is determined for all { € T,,M. By polarization,
this determines the values of ric(¢,n) for all £,n € T, M via

riC(§7 77) = % (rlc(§+n7 §+77) - ric(§7 g) - I'iC(?’], 77)) :

Remark 3.3.6. Both maps ric : T,M x T,M — Rand g : T,M x T,M — R are bilinear
and symmetric. The second map ¢ is in addition non-degenerate. Thus there exists a
unique endomorphism Ric : T, M — T,,M such that

ric(¢,7) = g(Ric(€),n)
forall {,n € T,M.

In local coordinates: For any chart x : U — V we get functions Ricg :V = Rby:

. 0
Ric < I

n ] j a
jzgmmmman

We compute:

e = rie(2 9
v ozt Oxi

. (0 d
- 9<Rm<aﬂ>’55>

- o 0
— ick 2 2

- 0 0

_ sk

= g Ric; g(@mk’axj>'
k=1

We have shown:

n
I'iCZ'j = ZRiCéC'gkj
k=1

The functions ric;; are obtained from the functions Ric? by lowering the upper index.
Similarly, the Ric? can be obtained from the ric; ; by raising one index.
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3 Curvature

Definition 3.3.7. The map scal : M — R defined by
scal(p) := tr(Ric|,)

is called the scalar curvature of M.

Lemma 3.3.8
(i) In local coordinates we have

scal(p ZRm (p) = Y ricy; (2(p)) - g7 (z(p)).-

3,j=1

(ii) For a generalized orthonormal basis E, . .., E, of T,M we have

scal(p Zel ric(E;, E;).

Proof. Clear. O

Remark 3.3.9. Let us consider the special case when dim(M) = 2. Let K be the Gauf3
curvature, i.e., K(p) = K(T,M). Then the curvature tensor is given by

R(&,n, ¢ v) = K(p)(9(n,Q)g(& v) — g(&QOg(n,v)).

Thus we get for the Ricci curvature
ric(&,n) Zsz- (&, Ei, Ei,m)

2
(p) Y ei(9(Ei, Eng(&,n) — 9(&, Ei)g(Ei,n))
=1

= K(p)(29(&,m) — 9(€,m))
= K(p) - g(&,m).
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3.4 Jacobi fields

This shows

ric=K-g
and

scal = 2K.

In the case of surfaces the Riemann curvature tensor, sectional curvature (Gauf$ curva-
ture), Ricci curvature and scalar curvature all determine each other. In higher dimen-
sions this is no longer so.

Remark 3.3.10. The following table shows how the different notions of curvature de-
pend on each other:

[dimM [ 2 | 3 [ >4 |
i 3%
K A A 1
ric Do M M
scal s Vv v

Remark 3.3.11. In the physics literature the following notation in local coordinates is
often used:

e for R and R ones writes: Ré ik and R;jy; (as here),
e for Ric and ric one write: ric;; = R;; and Ric] = R/,

e for scal one write: scal = R.

3.4 Jacobi fields

In order to better understand the behavior of geodesics we will linearize the geodesic
equations. This leads to the Jacobi fields and relates geodesics and curvature.

Definition 3.4.1. Let M be a semi-Riemannian manifold. A variation of curves
c:(—e,e) x I — M is called a geodesic variation if for every s € (—¢,¢) the curve

t— cs(t) = c(s,t)

is a geodesic.

97



3 Curvature

Let&(t) = %C(O, t) be the corresponding variational vector field. Then we have:

= S el + 1 (50.0.50.0) S0

ot
=0 since cs geodesic

= R(¢(t),&(t))éo(t)

Definition 3.4.2. The equation for vector fields £ along a geodesic ¢y

2
(F) €= renoe

is called the Jacobi equation. Its solutions are called Jacobi fields.

The above computation shows that the variational vector field of a geodesic variation
is a Jacobi field.

Proposition 3.4.3
Let M be a n-dimensional semi-Riemannian manifold, ¢ : I — M a geodesic and to € I.

Forall §,m € T4,y M there exists a unique Jacobi field J along c with
\Y
J(to) =& and  — J(to) = 1.

The set of Jacobi fields along c forms a 2n-dimensional vector space.

Proof. Let Ei(to),. .., En(to) be a basis of T, M. By parallel transport along c we
obtain a basis Ei(t),..., E,(t) of T,y M for all t € I. Write J(t) = >_7_; v/ (t)E;(t).
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3.4 Jacobi fields

j=1
Write R(¢(t), Ej(t))é(t) = > py a;? (t)Ek(t). Then J is a Jacobi field if and only if

n n
S iB= Y b,
k=1

Jk=1

hence if and only if

n
i}k:Zafvj forallk=1,...,n
j=1

This is a linear system of ordinary differential equations of second order. Thus solutions
exist (on all of I) and are uniquely determined by the initial data v*(ty) and ¥ (to), i.e.,
by J(ty) and %J(to).

The linearity of the Jacobi equation implies that its solution space forms a vector space.
The map {Jacobi fields} — T\ M @ T\ M, J = (J(to), %J (to)) is a vector space
isomorphism. In particular, the dimension of the space of Jacobi fields along c equals
2n. O

Example 3.4.4. If M is flat then the equation for Jacobi fields is simply given by

v 2
— | J=0.

{Jacobi fields} = {£(t) + tn(t) | £, n parallel }.

Hence

Example 3.4.5. Let cbe a geodesic in an arbitrary semi-Riemannian manifold. Then the
vector field J(t) := (a + bt)¢(t) is a Jacobi field for any a, b € R. Namely, we have:

2
<%> J(t)=0, and R(¢, J)é= (a+bt)R(¢ é)é=0.

Such a J is the variational vector field of the geodesic variation

(s, t) = c(t + s(a+bt)) = c((1 4 sb)t + sa).

This is a variation of ¢ which is obtained by simply reparametrizing the geodesic. It
contains no geometric information. Therefore such a Jacobi field is uninteresting. Thus
there is a two-dimensional space of uninteresting Jacobi fields.
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3 Curvature

Remark 3.4.6. If a Jacobi field J : I — T M satisfies:

J(to) 1 é(to) and %J(to) 1 é(to) for a tg € 1,

then we have

J(t) Lé(t) and %J(t) 1 é(t) foralltel.

% <%J,c'> = < <%>2J,c’> + <%J,§tj> = (R(¢,J)é,¢) =0

=0

Namely,

implies (J,¢) = 0 and from

d . vV oo\
%<J,C> = <EJ,C> =0

we see that (J, ¢) = 0.

Consequence. Let cbe non light-like. In this case we have T,y M = Ré(t) @ é(t)*t. Then

{Jacobi fields along c} =R - ¢ @R -t ¢ @ {Jacobi fields J along c| J L ¢, %J 1é}.

uninteresting
Jacobi fields

interesting Jacobi fields

Remark 3.4.8. For light-like geodesics c this is not true because ¢ L ¢.

Example 3.4.9

Let (M, g) = (R?, gpink), let ¢ be a light-like geodesic and ¢
let £ be a light-like parallel vector field along ¢ which is

linearly independent of ¢. §

Since ¢ is parallel and R = 0, the vector field £ is also a C

Jacobi field and we have:
{Jacobi field along ¢} = R-¢@dR(t¢c) BRE D R(LE)
—_———
= {Jacobi field J along c¢| J L ¢, %J L é}
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3.4 Jacobi fields

Definition 3.4.10. For « € R the generalized sine and cosine function s,., ¢, : R -+ R
are defined by

ﬁsin(\/ﬁr), k>0 cos(v/k - 1), k>0

S(r) =<, k=0 and «cg(r):=<(1, K=

i Sinh(VIkl-7), w <0 cosh(y/[k]-7), K <0

respectively.

It is easy to check that

Kﬁz + ci =1,
s = 4 and s5,(0) =0,
/

1.

K

(. =—ks, and cx(0)

Example 3.4.11. Let (M, g) be a Riemannian manifold with constant sectional curvature
K = k. Let c be a geodesic, parametrized by arc-length. Let £ be a parallel vector field
along c with £ L ¢. Set

J(t) = (as.(t) + ben(t)E(t)  witha,beR.

Then

v\ 2
<@> J = (a8, +b¢;)§ =—k(as, +beg) =—krJ.

For the curvature tensor we here have R(£,7)¢ = k((n,¢() £ — (£,¢)n). Thus

R(¢é,J)e = (as, +bcy) - ﬁ(@é—@&) = —/i(asn + bc,i)g = —kJ.
=0 =1

Hence J is a Jacobi field and

{]acobi fields along c¢|J L ¢, %J L c'}

= {(asx +bcx)&|a,beR, ¢parallel along ¢, & L ¢}.
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3 Curvature

AP
/LilJJ_I_LLLJ.J._I_I_I_LLLI:p

k<0

Proposition 3.4.12

Let M be a semi-Riemannian manifold and ¢ : [a,b] — M a geodesic. Let & be a smooth
vector field along c. Then

€ is a Jacobi field <= & is the variational field of a geodesic variation.

Proof. The implication “«<" is already known. We show “=-".

to
Let £ be a Jacobi field along c. Choose a ty € [a, b] ! L)
and choose a smooth curve 7 : (—¢,e) - M with ¢ \ .
v(0) = c(tp) and 4(0) = &(tp). Let ny be the d)F—
parallel vector field along v with 7;(0) = é(t). E >
Let 72 be the parallel vector field along v with vy m

12(0) = F(to)-

Ui
Set n(s) = m(s) + sna2(s) and

c(s,1) 1= exp.(y) ((t —to)n(s)). /%

Since the domain of definition of exp is open, ~y
c(s,t) is defined for |s| sufficiently small and for
all t € [a,b]. Then we have
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3.4 Jacobi fields

c(0,1) = exp.(g) ((t —to)n(0)) = €XPe(ty) ((t —to)c(to)) = c(t)

Hence c(s,t) is a geodesic variation of ¢(t). Let J(t) := %(O, t) be the corresponding
variational field. Then J is a Jacobi field. We show:

Elto) = J(to) and  ~E(to) = J(to).

Then we get £ = J because Jacobi fields are uniquely determined by their initial data
and hence ¢ is the variational field of the geodesic variation ¢(s, t).
We calculate

Oc d d .
J(to) = &(O,to) = 7 o expy(s)(0) = i v(s) = §(0) = &(to)
and
\V4 V Oc V Oc \Y \Y
aj(to) = 5&(0,%) = &a(oato) = EU(O) =n2(0) = 55(750)- U

We are now able to generalize Lemma [2.6.26] and can identify the differential of the
exponential at arbitrary points in its domain.

Proposition 3.4.13

Let M be a semi-Riemannian manifold, p € M and § € T,,M. We assume that the geodesic
v(t) := exp,(t§) is defined on [0,1], i.e., £ lies in the domain of exp,,.

Forn € TyM(= TyT,M) let J be the Jacobi field along v with J(0) = 0 and %J(O) = .
Then we have for all t € (0, 1]:

J(t)

dexp,, |t(n) = —

Proof. Consider the geodesic variation
c(s,t) = exp, (t(&+ sm)).

Let ¢ := % |s=0 be the corresponding variational Jacobi field. Then we have

Oc

C(0) = 5°(0,0) = - exp, [o=o(0) = 0 = J(0)

and
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3 Curvature

\% V oc V Oc \Y \%
7 6(0) = =25-(0,0) = 5-5.(0,0) = ——(§ + sn)|s=0 = 1 = —.J (0)
Hence ¢ = J. Now we compute for fixed ¢ € (0, 1]:
0 0 s 1
dexpy le(n) = 5 exp,(t€ + sm)lmo = 7-exp, (£ (€+ 7)) _ =7¢W=770). O

Corollary 3.4.14
Let M be a semi-Riemannian manifold, let p € M and let £ be in the domain of exp,,. Then

ker(dexp, |¢) = {Jacobi field along ~(t) = exp,(t€) | J(0) = 0, J(1) = 0}.

Definition 3.4.15. Let M be a semi-Riemannian manifold and v : I — M a geodesic.
Then ty,t, € I, t; # to are called conjugated points along v, if there exists a non-
trivial Jacobi field J along v with J(¢;) = 0 and J(t2) = 0.

Consequence. dexp, |¢ is non-invertible if and only if 0 and 1 are conjugated points
along (t) = exp,(t).

104



3.4 Jacobi fields

Example 3.4.17. Let M be a Riemannian manifold with constant sectional curvature
K =k.

Case 1: k < 0. Every Jacobi field has at most one zero.
= There are no conjugated points.

= dexp, ¢ is invertible for all { € D,

= The map exp,, : D, —+ M is a local diffeomorphism.

Case2: k > 0.

For a geodesic parametrized by arc-length, the
conjugate points belonging to ¢, are the points
to + mﬁ for m € Z\ {0}. Considering the case
m = 1 we have

exp, ({£ € T,8" | |¢] = 7}) = {-p}-

For |¢| = m we obtain

kerdexp, |¢ = ¢t

Proposition 3.4.18

Let M be a semi-Riemannian manifold and let ¢ : [to,t1] — M be a geodesic. Let ty and t;
be not conjugated with each other along c.

Then for £ € Ty )M and n € T, )M there exists exactly one Jacobi field J along c with
J(to) = fand J(tl) =T.

€ ;

a ],
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Proof. The linear map

2n-dimensional (n 4 n)-dimensional
{Jacobi field along ¢} — T )M @ T, M,
J = (J(to),J(tl)),

is injective since ¢y and ¢; are not conjugated to each other along c. For dimensional
reasons, this map is an isomorphism. O

Proposition[3.4.18| means that in the non-conjugate case we can also characterize Jacobi
fields by the boundary values J(tp) and J(t;) instead of the initial values J(t) and
%J (to). In the conjugate case this is certainly wrong.

Example 3.4.19. Let c be a geodesic emanating <—p = c(to)
from p € S™ which is parametrized by arc-length.
The set of n € T, S™ for which exists a Jacobi field

J along c with J(0) = 0 and J(7) = n is given by
{n1=a-ir)|a R} \v
— —p=c(t)
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4 Submanifolds

4.1 Submanifold of differentiable manifolds

Definition 4.1.1. Let M be an m-dimensional differentiable manifold. A subset
N C M is called an n-dimensional submanifold if for every p € N there exists a
chart z : U — V of M with p € U such that

z(NNU) =V N (R" x {0}).

{0} x R™"

N HY V Cc R"

U /\

20
) \__/

Such a chart is called submanifold chart of N. The number m — n is called codimen-
sion of N in M.

R" x {0}

Example 4.1.2

(1) Codimension n = 0: A subset N C M is a submanifold of codimension 0 if and
only if N is open subset of M.

(2) Dimension n = 0: A subset N C M is a submanifold of dimension 0 if and only if
N is a discrete subset of M.

(3) Affine subspaces: Let N C M = R™ be an affine subspace, i.e., N is of the form
N = N'+p, where N’ C R™ is an n-dimensional vector subspace and p € R™ fixed.
Choose A € GL(m) with AN’ = R™ x {0}. Thenz : U = R™ — V = R™, given by

z(q) == A(q — p),

is a submanifold chart.
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4 Submanifolds

(4) Graphs: Let M; and M, be differentiable manifolds and let f : M; — M; be a
smooth map. Set M = M; x M; and

N=T;={(&n) € My x My|n=f(&)}.

r

U1 X U2 T
-1
i,,,, Us 21 X 29 xg0fowy

1 T /\ v
M,

My Uy Vi x Vs

Choose charts z; : U; — V; of M; withp € U; x Uy. Wlo.g. let f(U;) C Us. For
w € Vi and z € V5 set
Y(w,z) = (w,z — (z20 for ) (w)).

Then x := 1) o (x1 X x2) is a submanifold chart, defined on U; x Us.

Theorem 4.1.3

Let M be an m-dimensional differentiable manifold. Let N C M be a subset. Then the
following assertions are equivalent:

(i) N is an n-dimensional submanifold.

(ii) For every p € N there exists an open neighborhood U of p and smooth functions
fi,--+ fmen : U — R such that
@ NNU={qeU|filg) = . = fm-nlq) =0F
(b) The differentials df1ly, . .., dfm—nlp € T,y M are linearly independent.

(iii) For every p € N there exists an open neighborhood U of p, an (m — n)-dimensional
differentiable manifold R and a smooth map f : U — R with
(@) NNU = f~'(q) where g = f(p);
(b) df|,: T,M — T, R has maximal rank.

Proof. “(i)=(ii)”: Letp € N and let x : U — V be a submanifold chart for N withp € U.
W.lLo.g. let
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4.1 Submanifold of differentiable manifolds

(1) z(p) = 0 € R™ (otherwise compose x with a suitable translation);
(2) V =Vi x V5 where V; C R" and Vo C R (otherwise make U smaller).

Now f; : U = R, f; := 2", do thejob (j = 1,...,m — n).
“(ii)=(iii)” is obvious. Simply set R := R™~ " and f =(f1,- s frnen)

“(iii) = (i)": g /\

V/o/

Choose a chart ¢ : U — V of M around p and a chart ¢ : U — V of Raround ¢ := f(p).
W.l.o.g. we assume that f(U) C U. Since ¢ and ¢ are diffeomorphisms, we have

rank D(¢o fo 8071)|g0(p) = rankdf|, =m —n.

The implicit function theorem yields: One can shrink V' and U to smaller neighbor-
hoods of ¢ and p, respectively, such that V' = V; x V; and one can find a smooth map
g : V1 — V5 such that

(Bofop ) M) =(for ") Hq) =T,

If we compose ¢ with a submanifold chart for graphs as in the Example 4.1.2] () then
we get a submanifold chart for N in M around p. O

Definition 4.1.4. Let M and R be differentiable manifolds and let f : M — R be
smooth. A point p € M is called a regular point of f if df|, has maximal rank.
Otherwise p is called a critical point of f.
A point ¢ € R is called a regular value of f if all p € f~!(g) are regular points.
Otherwise ¢ is called a critical value of f.
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Example 4.1.5. Let M = R = Rand f(t) = t2. We R
have el
critica
df|t(£) = f/(t) €. ( point critical
value
Hence ¢ is a critical point of f if and only if f'(t) = M k 0
0. In this example ¢ = 0 is the only critical point & r.eg‘ﬂar Values\
and f(0) = 0 is the only critical value. regular points Punkte
R
Example 4.1.6. Let M = R = R and 5
f(t) =t2(t — 1). Here f has the critical M 0 3
pointst = 0and t = % The critical values
4
are f(0) =0and f(3) = —5-.
R

Example 4.1.7. Let M = R = R and
f(t) = 0. In this case all ¢ € R are critical
points but 0 is the only critical value.

The examples indicate that there may be many critical points but there are always only
few critical values. This is true in general:

Theorem 4.1.8 (Sard)

Let M and R be differentiable manifolds and let f : M — R be smooth. Then the set of
critical values of f is a null set in R. In other words, for every chart x : U — V of R the set
x(U N {critical values of f}) C V is a null set (in the sense of Lebesgue measure theory).

For a proof see [M65| Chapter 3].

Corollary 4.1.9
If f : M — Ris smooth and if ¢ € R is a reqular value of f, then N = f~1(q) is empty or a
submanifold of M with codim(N) = dim(R).
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Proof. This follows directly from Criterion (iii) in Theorem £.1.3l O

Example 4.1.10. Let M = R""! and R = R. Let f : R*"! — R be given by f(z) =
|z|? = (2°)% + ... 4 (z")2 Then S® = f~1(1) and for any = € R"*! we have

Df|, = (22°,...,2z™).

= rank(Df|,) = { (1)’ iig

= Forallz € f71(1) we have rank(Df|,) = 1.

= 1lis aregular value of f.

@] S™ < Rt is a submanifold of codimension 1.

Remark 4.1.11. In this example all ¢ € R\ {0} are regular values. We have

o= TP

For the critical value ¢ = 0 we have that f~1(0) = {0} is also (by coincidence) a subma-
nifold, but of the wrong codimension n + 1. In general, the preimage of a critical value
is not a submanifold.

Remark 4.1.12. Sometimes the set f~!(¢q) is a submanifold with codimension dim R
even if ¢ is a critical value.

Example 4.1.13. Let g : R"*! — R, g(z) = (Jz|*> — 1) Then 0 is critical value of g but
8" = g~1(0) is a submanifold of codimension 1.

Remark 4.1.14. Submanifolds of differentiable manifolds are themselves differentiable
manifolds. Namely:

Let N C M be a submanifold and p € N and z : U — V a submanifold chart with
r=(zb, ..., 2" 2"t .. 2™), then

(z',...,2"): UNN = VNR"

is a chart of N. The set of charts of /V obtained in this manner by restricting submanifold
charts to N is a C°°-atlas for N.

111
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Theorem 4.1.15
Let N C M be a submanifold. Let v : N — M be the inclusion map, «(p) = p. Then we
have:

(i) v is smooth and di|, : T,N — T, M is injective.
(i) If f : M — P is smooth then f|n : N — P is also smooth.

(iii) If g : Q — M is smooth with g(Q)) C N then g : Q — N is also smooth.

Proof. (i) Letz = (¢!,...,2™) be a submanifold chart of N in M and & = (z!,...,2")
the corresponding chart of N. The following diagram commutes:

L

N>UNN UcM
70 ‘
varn =2E0

Obviously, £ — (&,0) is smooth. Since this map is linear, it coincides with its
differential, such that the differential is in particular injective.

(ii) The function f|y = f ot is the composition of two smooth maps and therefore
again smooth.

(iii) Letq € Q and = = («!,...,2™) be a submanifold chart of M around g(q). Since

g is smooth the functions ¢’ := 2! o g are also smooth. From g(Q) C N we see
that (¢*,...,¢™) = (¢',...,9™,0,...,0). Now (g',...,¢") is smooth and thus also
g:Q — N. O

Remark 4.1.16. One identifies 7, N with d¢|,(7, V') and thinks of it as a vector subspace
of T, M.
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Remark 4.1.17. If M = R™, ie.,, N C R™, then one often considers 7, N as a vector
subspace of R via T,N C T,R™ m% R™.

isom.

Example 4.1.18. For N = S" C R"*! we have 7T,S" = p™.

4.2 Semi-Riemannian submanifolds

Definition 4.2.1. Let (M, §) be a semi-Riemannian manifold. A submanifold M c M
is called a semi-Riemannian submanifold, if for all p € M

(§|p)‘TpM><TpM = glp

is non-degenerate.

Example 4.2.2. If (M, g) is Riemannian, then every submanifold is a semi-Riemannian
submanifold.

Example 4.2.3. Let (M,g) = (R? gyink) be 2-dimensional Minkowski space, i.e.,
Ivink = —dr°’ ® dx® + dz' ® dz'. Then

Ny = {(2°,0)]| 2° € R} is semi-Riemannian (with negative-definite metric).
Ny = {(0,2')| 2! € R} is semi-Riemannian (with positive-definite metric).

N3 ={(t,t) |t € R} is not semi-Riemannian, since the restriction of gy on 7, N3
vanishes.

Ny = S! has 4 points at which the restriction of gy degenerates.

=

20 M
Ny _
Ny x!

N;; Nl
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4 Submanifolds

Definition 4.2.4. Let M C M be a semi-Riemannian submanifold. Then we call
NpM :=T,M* ={¢ € T,M| g|,(&n) =0VneT,M}

the normal space of M at the point p.

Remark 4.2.5. We have T,M = T,M & N, M since
(1) dim N,M > dimT,M — dim T, M.

(2) If there existed a { € T,M N Np,M with £ # 0, then we would have ¢ € T,M with

glp(&§,m) = 0for all n € T,M. Then (g|p)|7,r xT, Would be degenerate, which is a
contradiction.

Let M C M be a semi-Riemannian submanifold and p € M. Let

tan :TpM — Tp,M,
nor :T,M — N,M,

be the orthogonal projections. Both M and also M have, when seen as semi-Riemannian
manifolds in their own rights, a Levi-Civita connection V and V, respectively. Now we
want to investigate, how we can determine V directly from V.

(M,g)------- > ? Levi-Civita connection
7
V

(M,g)------- >V Levi-Civita connection

Here gl, := (9lp) 1, MxT, M-
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4.2 Semi-Riemannian submanifolds

Letp e M, ¢ € T,M and n € C*(U,TM), where
U C M is an open neighborhood of p. Choose a
smooth extension 7 of 7 to an open neighborhood
U of pin M. Then V,5j € T,M does not depend
on the choice of continuation 7.

Namely: the tanget vector { € T,,M is of the form
¢ = ¢(0) with a curve ¢ : (—e,e) — M. Hence V¢ij
depends on 7 only along ¢, that is, only on 7.

We can also write:

vgn = vgﬁ.
Example426
Let M = (R ,geuct) and M = Sh Set
n(zt,2?) = (=22, 2'). Forc : R — S! with c(t) =

(cos ) sin(t)) we have

Then we get:

Vyn = %c = ¢ = (—cos(t), —sin(t))

which is not tangent to .S 1,

We set V¢n := tan(Ven).

Theorem 4.2.7

Qi

n’l

Let (M, g) be a semi-Riemannian manifold and M C M a semi-Riemannian submanifold
with induced semi-Riemannian metric g. Let V be the Levi-Civita connection of (M, g).

Then )
Ven = tan (Vgn)

is the Levi-Civita connection of (M, g).
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Proof. We check that V satisfies the axioms of the Levi-Civita connection for (M, g). By
the uniqueness statement in Theorem[2.3.8] V must then be the Levi-Civita connection
of (M, g).

(i) Locality is clear because V is local.
(i) Linearity in £ is clear because tan is linear and V is linear in &.
(iii) Linearity in n is clear by a similar argument.

(iv) Product rule I: Let f € C*(U) and n € C*(U,TM), where U C M is an open
neighborhood of p and § € T, M. Let /7 and f be smooth extensions of  and f to
an open neighborhood U of p in M. Then

Ve(f-n) = tan(Ve(f-7))
= tan (8§f- Nlp + f(P) : ?iﬁ)
= tan (8§f “Nlp + f(p) - ?iﬁ)
= Ocf - tan (7,) + f(p) - tan (V)
= Ocf -nlp+ f(p)Ven.

(v) Product rule II: Let £ € T,M and ny,m2 € C°°(U,TM). Choose smooth extensions
1,72 € C°(U, TM). Then

Oeg(m,m2) = Oeg(i, )
= g|¥’(v§ﬁlaﬁ2|p) +§|p(771|pav§772)
=n2|p, in particular tangent to M
= glp(tan (Vemn), n2lp) + glp (mlp, tan (Vi)
= g\p(ng,nz ’p) + g\p(m\m V5772)-

(vi) Freeness of torsion: Let zt,... 2™, 2™ ! ... 2™ be submanifold coordinates on M.
Here z!, ..., 2™ are coordinates on M. For 1 < 1i,j < m:

0 _ 0 _
@—tan<va&p@> —tan(Vaij

Example 4.2.8. Let M = S' ¢ M = R? with § = geua. Set n(c(t)) = ¢é(t) where
c(t) = (cos(t),sin(t)). Then

0 0
p@x’) %p@xl

V,n = tan <vnn|p> = tan(—p) = 0.

Hence c is a geodesic in S* (but not in R?).
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4.2 Semi-Riemannian submanifolds

Lemma 4.2.9
Let ¢ € T,M and n € C*(U,TM), where U C M is an open neighborhood of p. Then
nor(Ven) € N, M only depends n via n|,.

Proof. Let zt,... 2™, ™! ... 2™ be submanifold coordinates on M around p. Let
Ff] : U — R be the Christoffel symbols of V, 1 < 4,5,k < m, and fk U — R be the
Christoffel symbols of V,1<14,5,k <m.OnU we write ) = Z ' 77] === and we define
on U:

o o
'F]j(ﬁﬂl,...,xm):: U](x,...,xm) fOl‘J—l,..,,m
0 forj:m—{—l,...,m

Setq: =" g 8 ~. Furthermore, write ¢ = 1, ¢’ -2.| . Then we have:

Bxl

nor(Ven) = nor(Ver)

= Vgﬁ Vgn
m . m 877k m . y o
= D &) (axz +2_ Tl '77%@)) p
=1 k=1 ( j=1 p

mim ak
_ZEZ azz'

i=1 k=1

0
()+Zfzﬂx(m "Lz (p) Fral

m.m ' m B o m
i k
e S (S tbhan ], - Sorbher e )
=1 j=1 k=1 P k=1 P
This only depends on 1/ |,,), i.e., only on 7],. O

Definition 4.2.10. The map I/ : T,M x T,M — N,M, given by
11(57 77) = nor(@gﬁ) )

is called the second fundamental form of M in M (at the point p € M).
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Lemma 4.2.11
The second fundamental form 11 is bilinear and symmetric.

Proof. In the previous proof we have shown that

e = 35 (300 %] 3o | Yew

i,j=1
Clearly, II is bilinear. By the symmetry of the Christoffel symbols in the lower indices,
IT is also symmetric. O

Example 4.2.12. Let M = S' C M = R? and 7 as in Example £.2.8] The second funda-
mental form is then given by II(n, n) = —p.

Conclusion. The equation B
Ven = Ven+11(€,n)p)

is the splitting of V7 into its tangential and normal parts.

Notation 4.2.13. For better readability we will from now on write (£,7) instead of

g(&,m) or g(&,m)-

Since one can compute the Levi-Civita connection V of the submanifold M from the
Levi-Civita connection V of M, one should also be able to compute the curvature tensor
R of M from that of M. Indeed this is possible.

Theorem 4.2.14 (Gaufs Formula)
Let M C M be a semi-Riemannian submanifold and p € M. Let £,n,¢,v € T,M. Then we
have

(R(C,v)€m) = (R(¢, V)€ m) + (I(v, €),11(C, n)) — (IL(¢, €), I(v, 7)) -
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4.2 Semi-Riemannian submanifolds

Proof. Let x',..., 2™ be coordinates of M around p coming from a submanifold chart

ol o 2™ ™2™, By multilinearity, it suffices to show the assertion for ¢ =
0 _ _ _ 0

B |y 1= Wp,(— axk‘ and v = aml‘p' We have

(R(Gv)Em) =

< oal Ot 2% 1p 9o oxt 22k Ot 2 1p 82k Oz N
tor51on®< C?ﬁ (;Z'i —?,ﬁﬁ ai@.,?]>
_ 0 - g 0 — 0 _ o 0
N <V¢Vaawl ot T Vell <@’ 8302) B V,,Vﬁ oxi Vil <8xk’ 833@) ’77>
0 0
- <VCV% dxi VVVB% 8xi7n>
=0
o 9 0 g 0 - 0
9% <H <a l’%) ’@>_<H<3ml’ ay’) ! Caxa>
=0
o 0 0 o 0 -0
‘@<H<aﬁwhﬂ’aﬁ>+<ﬂ<a®5ﬁ>“”aﬁ>
= (R(C,v)& ) + (I(C, §), (v, m)) — (I(v, £),11(¢, n)) O

Corollary 4.2.15
If E C T, M is a non-degenerate plane with basis £, n, then we have

(e, () — (I1(E,n), €, )
FE)= KB+ €O mm—en®

Proof. This follows directly from the definition of sectional curvature and the Gaufd
formula. O

Lemma 4.2.16
Let M C M be a semi-Riemannian submanifold. Let ¢ : M — N be a local isometry. Set
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@(M) =: N. For &,nm € T, M we have

IIn (d@’p(f)7 d@’p(n)) = d‘P‘p(HM(g’ 77))

Proof. Local isometries preserve V and V. Since 11 is the difference of V and V we get
the assertion. O

4.3 Totally geodesic submanifolds

Let M C M be a semi-Riemannian submanifold and ¢ : I — M a smooth curve. Let ¢
be a smooth vector field at M along c. Then the splitting in tangential and normal parts
of the covariant derivative is given by

\V/ \Y,

— = — II(&, ¢).
In particular, we have for £ = ¢

\Y

. V. .
%c—%c—kll(c,c).

Therefore the curve cis a geodesic in M if and only if

V. e Vo
price II(¢,¢), ie.,if 7 ¢(t) € NyyM forallt € 1.

Example 4.3.1. Let M = S" C M = R""! with Euclidean metric. Letc : I — S™ be a
great circle,

c(t) = cos(t) - p+sin(t) - €.

withp € S", ¢ € T,S™ C R""! and ||¢|| = 1. From this we get

—C(t) = &(t) = —cos(t) - p —sin(t) - £ = —c(t) € Ny S™.

Hence cis a geodesic in S™.

120
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Definition 4.3.2. A semi-Riemannian submanifold is called totallygeodesic if IT = 0.

Theorem 4.3.3
For a semi-Riemannian submanifold M C M the following statements are equivalent:

(i) M ist totally geodesic.
(ii) Every geodesic in M is also a geodesic in M.

(iii) For any p € M and £ € T,M there exists an € > 0 such that the M-geodesic
c:(—¢e,e) = M with c(0) = p and ¢(0) = ¢ lies in M, ie., c(t) € M for all
t € (—¢,¢).

(iv) Let ¢ : I — M be a smooth curve. Then the parallel transport along c w.r.t. M and
w.r.t. M coincide (for tangent vectors of M).

Proof. “(ii)=-(iii)”: Let p € M and ¢ € T, M. Let c be the M-geodesic with ¢(0) = p and
¢(0) = &. Let ¢ be the M-geodesic with ¢(0) = p and ¢(0) = &. By (ii), ¢ is also geodesic
in M. Since we have &(0) = ¢(0) and &(0) = ¢(0), the two M-geodesics must coincide,
c¢=con (—¢,¢) forae > 0. In particular, c lies in M.

“(ii)=@1)": Letp € M and ¢ € T,M. Let ¢¢ be the M-geodesic with ¢¢(0) = p and
¢¢(0) = £. By (iii), c¢ lies in M for t € (—¢,¢) with suitable ¢ > 0. On (—¢,¢) we get:

In particular, we have

I1(ce(t), ce(t)) = 0forallt € (—¢,¢).

For ¢ = 0 this means that I1(£, §) = 0. Since ¢ is arbitrary, polarization yields II = 0.

“(i)=-(iv)”: We have %5 = %5 . Hence ¢ is parallel in M if and only if ¢ is parallel in M.
“(iv)=-(ii)"”: Let c be a geodesicin M.

= c¢is parallel in M.

W s parallel in M.
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= cist geodesicin M. O

Example 4.3.4. Let M C M = R" be an affine subspace where R" is equipped with geycl
or gmMink- Criterion (iii) shows that M C R™ is totally geodesic.

Example 4.3.5. Let M be an arbitrary semi-Riemannian manifold.
(1) All O-dimensional submanifolds are totally geodesic.

(2) Every submanifold of codimension 0, i.e., every open subset of M, is totally
geodesic.

(3) Let M = {c(t)|t € I}, where ¢ : I — M is a geodesic. If M is a semi-Riemannian
submanifold (has no self-intersection, for instance), then M is totally geodesic.

Remark 4.3.6. Most semi-Riemannian manifolds M do not have totally geodesic sub-
manifolds of dimension m € {2,...,m — 1}.

Theorem 4.3.7
Let M C M be a semi-Riemannian submanifold. Assume that there exists an isometry

¢ € Isom(M), such that M is a connected component of
Fix(¢) = {p € M| ¢(p) = p}.

Then M is totally geodesic.

Proof. We check Criterion (iii) in Theorem[.3.3] Let p € M and & € T,,M. We first show
that

dplp(§) = €.
Namely, let v : J — M be a smooth curve with v(0) = p and §(0) = £. Then
. d .
dilp(€) = delp(7(0)) = — (9 07) le=o =3(0) =& O
——
=~, since
M cFix(¢)
By Proposition[2.6.20] ¢ lies in Fix(¢p). Since ¢(I) is connected, ¢ remains in M. O
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Example 4.3.8. Let M = S™. Let W C R""! be a
subvector space. Let A € O(n+1) be the reflection
about W.

= ¢ := A|gn € Isom(S™)

= Fix(p) =W NS™ is totally geodesic

Hence all “great subspheres” in S™ are totally
geodesic submanifolds. In particular, S™ admits
totally geodesic submanifolds of every codimen-
sion.

The Gauf Formula (Theorem [£.2.T4) tells us that if M C M is totally geodesic, then

R(¢,m)¢ = R(¢,n)¢ forallp e M and €,n,¢ € T,M,
K(E) = K(F) for all non-degenerate planes £ C T,,M.

4.4 Hypersurfaces

Definition 4.4.1. A semi-Riemannian submanifold M C M is called a semi-
Riemannian hypersurface if codimM = 1.

The signature of M is ¢ = +1if (g|p)|n,0rxN,0s is positive definite, and ¢ = —1 if
(9lp) N, %N, M is negative definite.

Remark 4.4.2. For ¢ = +1 we have Index(M, §) = Index(M, g) while for e = —1 we get
Index(M, g) = Index(M, g) + 1.

Notation 4.4.3. For { € T, M we write

€] == V(& &) |-
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Caution! This does not define a norm unless (-, -) is definite. In particular, it can occur
that |£| = 0 even if £ # 0.

Gradient of a differentiable function

Let (M, g) be a semi-Riemannian manifold of dimension n. Let f : M — R be differen-
tiable and p € M. Then df |, € T; M. In coordinates we have

n af ;
df =3 =% do
1=1

Since g|, is non-degenerate there exists exactly one £ € T, M such that

df|p(n) = glp(&,n) foralln € T,M.

Write { =: grad f|,. In local coordinates, write gradf = > ",

A O i (DN (D) (il O
9r1 — 2= 921 " \027 ) TV \owi ) T I\ G Gud

_Z (axz aw) Zo‘g”

Matrix multiplication with (¢¥7);; yields o’ = Z; g9 % thus
j:

n af Z
gradf = 32 55

1,j=1

Lemma 4.4.4
Let M be a semi-Riemannian manifold and f : M — R smooth and ¢ € R be a regular value

of f. Then M := f~*(c) C M is a semi-Riemannian hypersurface of signature ¢, if
(gradf,gradf)-e > 0.

gradf|,
igradfl,|

Moreover, we have v := € NpyM and (v,v) =e.
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Proof. Since cis a regular value, M is a hypersurface. The lemma follows once we show
gradf|, L T,M.

Let £ € T,M. We choose v : I — M with 4(0) = £ and we obtain:

0= (30 o = dFlo(€) = (grad ). .
———

C

Definition 4.4.5
Let M C M be a semi-Riemannian hypersurface
and p € M. Letv € N,M with |[v| = 1.

The linear map S, : T,M — T,M, characterized
by

(Su(§),m) = (I1(§,m),v) forall {,n € T,M,

is called the Weingarten map.

Lemma 4.4.6
The Weingarten map S, is self-adjoint.

Proof. This is clear because II is symmetric. O

Remark 4.4.7. We have S_, = —5,. Without specifying the choice of v, the Weingarten
map is only determined up to a sign.
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Lemma 4.4.8

Let M C M be a semi-Riemannian hypersurface and
p € M. Let U C M be an open neighborhood of p and
v e C®(U, NM) with |v| = 1. Then we have

S,(€) = —Vev.

Proof. For alln € C*°(U,TM) we have:

(Sy(€),m) = (1(&,m), v) = (nor(Ven),v) = (Ven,v)
=0 (n,v) — (0, Vev) = = (Ver,m) . O
——

=0

Gauf formula:
Let M C M be a semi-Riemannian hypersurface with signature . Let £,7,( € T, M.
Then:

R(&,n)¢ = R(&,m)¢ +e{ (Su(n), C) Su(€) — (Su(€), ¢) Su(n)}-

For any non-degenerate plane £ C T,,M we have

e SO, (S — (5,(0).m)°
RE) = KB+ (E.€) () — (€n)?

where £, 17 is a basis of E.

Pseudospheres and pseudo-hyperbolic spaces

Now consider M = R™™ with g = — Y"1 da’ @ da? + Y7, da’ ® da’ in Cartesian
coordinates 2, ...,z". Then (M, §) is a semi-Riemannian manifold of index k. For
k = 0 we have the Euclidean metric and for & = 1 the Minkowski metric. For general k
the representing matrix of g in Cartesian coordinates is given by

_1‘

@) =1 7

0
‘Y

In particular, all g;; are constant. Hence all Christoffel symbols vanish in Cartesian
coordinates. Therefore the curvature vanishes:

R=0, K=0, ric=0 and scal=0.
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Now consider the function

k—1 n n
PR SR, 0 = - S+ @) = Yl
=0 i=k =0

For the gradient we get

0 0
gradfle = > L) g7

=0
Thus grad f|, = 0 if and only if z = 0. Consequently, the only critical point of f is = 0
and 0 = f(0) is the only critical value of f. If ¢ # 0 then M := f~!(c) therefore defines
a differentiable submanifold of codimension 1. We compute:

(gradf|., gradfl.) = 4<Zm 8xi,Zw 8wi>
i=0 i=0

n
= 4 Z :Ui:ngij

i,j=0
n
= 4) gi(2!)
j=0
= 4f(x).
Hence for ¢ > 0 we have that f~1(c) is a semi-Riemannian hypersurface of signature
€ = +1, for ¢ < 0 itis a semi-Riemannian hypersurface of signature e = —1.

Definition 4.4.9. Let r > 0. The semi-Riemannian hypersurface
Si(r) = f71(r%)

of (R™*! g) is called the pseudo-sphere of radius » and with index k. The semi-
Riemannian hypersurface

Hy_y(r) = f7H(=r?),

is called the pseudo-hyperbolic space of index k£ — 1.
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Example 4.4.10. Let £ = 0 and § = geucl- Example 4.4.11. Thecase k = 1 and g =
Then S§(r) = S™(r) is the standard 9Mink 15 also of great interest.
sphere of radius 7.

Definition 4.4.12. The hypersurface H" := {x € H}(1)|z° > 0} together with the
induced Riemannian metric gy, is called the n-dimensional hyperbolic space.

Definition 4.4.13. The hypersurface S}(r) together with the induced Lorentzian met-
ric is called deSitter spacetime and H7(r) is called anti-deSitter spacetime.

Remark 4.4.14. The pseudo-sphere Sp(r) is diffeomorphic to R¥ x S"~* while the
pseudo-hyperbolic space H}(r) is diffeomorphic to S* x R"%. See the exercises or
[ONB83) page 111] for a proof of this fact.

We determine the curvature of these hypersurfaces. For M = f~(c) with ¢ # 0 we
recall

(gradfls, grad fl.) = 4f(z) =

hence

_ gradf|, gradf o Z
axl

e
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By Lemma we get

S, = —~id

Now the Gauf formula yields

REmMC =S¢ —(&Om) | and | K

ﬁw| ™

We compute
I'iC(g, 77) = Z 51 §7 ez €i, 77>

= 3 Z€Z< €i, € §,€z>€u77>

thus

ric= ———=g and scal =

Remark 4.4.15. For the Einstein tensor of Si(r) or H{(r) we get

) 1 3e 15-3-4
G:rlc—iscal-g:ﬁg—i 2 = 3r29

Thus deSitter and anti-deSitter spacetime are vacuum solutions of the Einstein field
equations with cosmological constant A = 3 and A = 2 , respectively.

Next we determine the geodesics of the pseudo-spheres and pseudo-hyperbolic spaces.
Letp € M where M = S2(r) or M = H ,(r) and let £ € T,M C T,R™"! = R"*! with
¢ # 0. What is the geodesic ¢ with ¢(0) = p and ¢(0) = £?

Note that p # 0. Then p and &, considered as vectors in R"*!, are linearly independent
because ¢ € T,M and p € N,M. Let E C R""! be the plane spanned by p and ¢. If
¢ is space-like or time-like, then £ is non-degenerate for g. Then the reflection (w.r.t.
g) about E is an isometry of (R"*1 g). The restriction of the reflection to M yields
an isometry ¢ of M, see the discussion of isometries below. Now E N M is the fixed
point set of ¢, hence a 1-dimensional totally geodesic submanifold. In other words, if
we parametrize the connected component of £ N M containing p proportionally to arc-
length or eigentime, respectively, in such a way that ¢(0) = &, then it is the geodesic ¢
we are after.
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If ¢ is light-like, then E is degenerate. But now E N M consists of two parallel straight
lines. If we take any affine parametrization of the straight line containing p, then we get
a geodesicin (R"*1, g) which contains p and lies entirely in M. Thus it is also a geodesic
in M. When choose the affine parametrization such that ¢(0) = p and ¢(0) = &, then we
found the right geodesic also in the light-like case.

In order to determine the isometry group of pseudo-spheres and pseudo-hyperbolic
spaces we define

O(n+1-kk):={AcGL(n+1)| (Az, Ay) = (z,y) Vz,y € R"T1}.

Here (z,y) = — Z;:é alyl + 377 a7y’ We have O(n + 1,0) = O(n + 1) and O(n, 1) is
the Lorentz group. For any A € O(n + 1 — k, k) we have

A(Sg(r)) = Sg(r) and  A(HR ,(r)) = Hi_(r).
Since the semi-Riemannian metric of M is obtained by restricting g to M, the restriction

of isometries of (R™™! g) to M are isometries of M. We have constructed an injective
group homomorphism

On+1—-kk) — Isom(M),

Next we show that this homomorphism is also surjective.
Proposition 4.4.16
Let M be a semi-Riemannian manifold, let p € M and ¢, 1) € Isom(M) with ¢(p) = ¥(p)

and dpl, = di|p.
Then ¢ and ) coincide on the set of all points which can be joined with p by a geodesic.
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Proof: Let ¢ : [0,1] — M be a geodesic with ¢(0) = p
and ¢(1) = g. Then ¢ := g o cand ¢ := 9 o ¢ are also
geodesics and we have ¢(0) = ¢(p) = ¥ (p) = ¢(0)
and (0) = dl, (¢(0)) = dyl,(é(0)) = é(0). Therefore
¢ = ¢. In particular, p(q) = ¢(1) = ¢(1) = ¥(q).

Corollary 4.4.17
If all points of M can be joined by geodesics with p, then every isometry ¢ of M is uniquely
determined by p(p) and de|p.

Example 4.4.18. Let M = (R", geyc1). We already know
{Euclidean motions} C Isom(M),

where a Euclidean motion ¢ : R” — R" has the form ¢(z) = Az + bwith A € O(n) and
b € R™. We can now use Proposition [4.4.16] to show that there are no further isometries
of Euclidean space. Let ¢ € Isom(M). Put b := ¢(0) and A := dg|p € O(n). Then
the Euclidean motion ¢(z) := Az + b satisfies ¢(0) = b = ¢(0) and dp|o = A = dy|o.
Since any two points in Euclidean space can be joined by a straight line we can apply
Corollary 4.4.17]and conclude ¢ = ¢. This proves

{Euclidean motions} = Isom(M).
Similarly one can show

Isom(R", gpmink) = Poincaré group.

Remark 4.4.19. The assumption that the points can be joined with p by geodesics is
necessary for the statement of Corollary £.4.17

Example 4.4.20. Let M = {p1,p2,p3} be a 0-dimensional mani-
fold consisting of 3 points. On a 0-dimensional manifold all tan-
gent spaces are trivial so ¢ = 0 is a Riemannian metric. All bi-

jective maps M — M are isometries. Consider the following two D3
maps:
pi1—=p1 P1 D2
¢1:=1id, and ¢y := 4 p2—p3 y y
D3> P2

Then ©®1 75 ©2 despite ©®1 (pl) = P2 (pl) and dgpl |p1 =0= dg02|p1.
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Example 4.4.21. Hereis a 1-dimensional example. Let M =
{(z,y) € R?||y| = 1} = MT UM~ where M* = {(z,y) €
R? |y = £1}. Letp = (0,1) € M. We provide M with the

Riemannian metric induced by the Euclidean metric on R2, M h
Put p
. o (x,y) on M
p1:=id, and @o(xz,y) = { (—y) on M- —

Both ¢ and ¢, are isometries. Now ¢;(p) = ¢2(p) and
dep1|p = dpalp but o1 # @a.

Lemma 4.4.22
On M = S} (r) (where 0 < k < n —1),on M = H}(r) (where 1 < k < n) and on
M = H"(r) any two points can be joined by a geodesic.

Proof. W.lo.g. we assume n > 2. Let p,q € M. Since M is connected we can choose
a continuous curve ¢ : [0,1] — M with ¢(0) = p and ¢(1) = ¢. W.lo.g. we assume
c(t) € {p, —p} forall t € (0,1). Then p and c(¢) are linearly independent for all ¢ € (0, 1)
and span a unique plane E(t).

Forany ¢ € (0, 1) the intersection M N E(t) consists of an ellipse or a pair of hyperbolas
or a pair of straight lines. For t — 0 the points ¢(t) converges to p; hence the points p
and ¢(t) lie on the same connected component of M N E(t) for sufficiently small ¢.

For t € (0,1) we choose X(t) € R"*! depending continuously on ¢, which spans
E(t) together with p and which, w.r.t. to the Euclidean skalar product (-, )., satis-
fies X (t) L pand | X (t)],yq = 1. Since S™ is compact there is a sequence ¢; € (0, 1) with
t; — 1 such that X (¢;) converges. Put Zlggo X(t;) =: X(1). By continuity, X(1) L p and
| X (1)l eya = 1. Hence p and X (1) are linearly independent and span a plane £(1). By
continuity, p, ¢ € MNE(1) and they lie in the same connected component of M NE(1).00

Theorem 4.4.23
Restriction yields isomorphisms

Isom(S;(r)) = On+1—kk) for0<k<n-1

Isom(Hj (r)) On—k,k+1) for1<k<n
Isom(H"(r)) SO(n,1) := {A € O(n, 1) | A§ > 0}.

Il

12
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Proof. Put M = S}(r), M = H})(r) or M = H"(r)and G = O(n +1 — k,k), G =
O(n — k,k+1), or G = SO(n, 1), respectively. We need to show: Every isometry of M
is of the form

o= Ay with A € G.

a) We first show that G acts transitively on M. This means that for all p,q € M there
exists an A € G with Ap = q.

Namely: W.lo.g.letp = r-eg = (r,0,...,0)T. From (g, q) = £r? we see that by := %q

satisfies (bo, bp) = £1. We extend by to a generalized eigenbasis by, b1, . .. , by, of R,
Now A := (by,b1,...,b,) € Gand Ap = r Aey = rby = q.

b) Next we show: For any linear isometry B : T,y M — T, M where py = rey, there exists
an A € G such that ¢ = A|y satisfies o(po) = po and dglp, = B. Namely:

does the job.

c) Letnow ¢ € Isom(M). Put p; := ¢(po) where py = reg. By a) there existsan A; € G
with A1pg = p1. Hence ¢ := A1_1|M o ¢ is an isometry of M with ¥ (pg) = po.
Moreover, B := di|p, : Tp,M — T, M is a linear isometry. By b) there is an A, € G
such that x := Ay|y satisfies dx|,, = B. Lemma and Corollary 4.4.17l imply
x = 9. Thus

QDZA1|MOT,Z):A1|MOX:A1|MOA2|M:(A10A2)|M- D
a
€

4.5 Trigonometry in spaces of constant curvature

We want to extend the classical trigonometry of the Euclidean plane to 2-dimensional
model spaces of constant curvature. This means that we investigate length- and angular
relations in geodesic triangles.

Notation 4.5.1. The model space M} is defined as

n( 1 e
S(\/E) if kK >0,
Mn:: R"™ if/-i:(),

n 1 g
H (\/|;|) if Kk < 0.
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Thus M}, is an n-dimensional Riemannian manifold with the constant sectional cur-
vature k.

Remark 4.5.2. Since for any given three points there exists a two-dimensional subma-
nifold of M} which contains these points, it suffices to consider the case n = 2.

Define the bilinear form on R?
<$, y>,@ = 5'30?/0 + ’f(xlyl + 3523/2)-

Set M, := {z € R?| (z, ), = 1} and put

ML, if Kk >0,
M, = N ]
{r e M, |2° >0} ifx<0.

In the case r # 0, the metric £ (-, ), on R? induces
a Riemannian metric on M,,. In particular,

M. _ {52 ifr =1,

H? ifx=—1.

In the case k = 0, every bilinear form on R3 of the form X - 2940 + z'y' + 2%y? induces
the same Euclidean metric on M, independent of A € R. We choose A = 0 and in the
case k = 0 we make the definition:

Lz, y), = a'y' + 222

Lemma 4.5.3
For every r € R, the isometry group of M, contains the subgroup

Gr = {p | ¢ = Alm, where A € GL(3) with (Az, Ay),. = (z,y)

K

LAz, Ay, = L @), Va,y € RS and AM,) = M)
K K

Remark 4.5.4. In the case x # 0 the conditions (Az, Ay), = (z,y), and 1 (Az, Ay), =
1 (2,y), are of course equivalent and we could omit one of them. But in the case x = 0
we need both of them.
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4.5 Trigonometry in spaces of constant curvature

From (Ax, Ay), = (x,v),, it already follows that A(M,) = M,. In the case x < 0, A
could possibly exchange the two connected components of M. This is ruled out by the
condition A(M,,) = M. In the case x > 0 we could omit this condition.

Proof of the Lemma. Let A € G,. Since ¢ = Ay, is the restriction of the linear map A,
we get that for p € M, the differential dy(p) : T)M,, — T,,(,)M also is the restriction of
A,

Here, the tangent spaces of M, are viewed as subvector spaces of R3. Since A respects
the bilinear form 1 (.,-) , the differential do(p) is a linear isometry for every p € M.

K
Thus ¢ is an isometry of Riemannian manifolds. O

Remark 4.5.5. Indeed, we have Isom(M, ) = G, but we will not need this fact.

For k = 1 we have

G, =2 {A e GL3)|(Az, Ay) = (z,y) Vz,y € R} =0(3)

the group of orthogonal transformations. For x = —1, G, is the group of time-
orientation preserving Lorentz transformations.

In case k = 0, we have:

Go = {A € GL(3)| (Az, Ay)o = (z,y)q, g (Az, Ay)y = § (2,9)o Y a,y € R?, AMy = Mo}
10 0

= A= ! b, 0? € R, B €O(2)
| B

This holds true since for any A € Gy,
2y = (Az)°(Ay)" = (Aga’ + A’ + A5a®) (AGy” + Aly" + A3y?)

Thus
Forz =y=ep: 1=(A9)? = AQ==+1 ~UT0 g0
For x = y =e;: 0= (AY)? = A9=0
For x = y =eg: 0= (AY)? = A9=0
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Hence B € O(2) and therefore

Go C {A (%’%)‘beRQ,BeO@)}.

The other inclusion ”">”” follows by a direct computation.

We now analyze, how Gy acts, if we identify M, with R2.

(5 5)
R - M, — Mg - R?

-, — 1 — 10 1 = 1 — b—i-BA
t i bB i)~ \ b+ Bz t

Hence the group Gy acts like the group of Euclidean motions.

viewed as a set of points, equal the sets of the form

As seen in the last paragraph, the geodesics in M, / ~

M, NE, 0
where E C R? is a two-dimensional subvector space.

Lemma 4.5.6
The geodesics parametrized by arc-length -y : R — M, with v(0) = eq are then given by

where ¢ € Ris fixed.

Proof. The curve 7 stays in M, because
(y(r),v(r), = ¢ (r)? + “(5H(T)2 sin(p)” + s, COS(‘P)Q) = ¢s(r)? + mg(r)? = 1.

Since v(0) = eg € M, and 7 is continuous, 7 remains in M,,. Moreover, 7 lies in the plane
E, which is spanned by e and (0, sin(¢), cos(p)) " . Hence 7 is contained in M,, N E. In
addition, v is parametrized by arc-length because

—K5,(T) —K5,(r)
(), 4(r), = « << k(1) sin(p) ) ; ( k(1) sin(p) )>
x(r) cos(p) (r) cos(p)

3=
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4.5 Trigonometry in spaces of constant curvature

= %(mzsn(T)Q + ff(c,@(r)2 sin()? + ¢, (r)? cos(gp)Q))

= k5, (r)? + cu(r)?
=1. O

The generalized sine and cosine functions allow us to explicitly write down many
isometries in G.

Example 4.5.7. Rotations about the ey-Axis are isometries,

1 0 0
0 cos(e) —sin(p) | € G,
0 sin(p) cos(p)

for any ¢ and any « € R. Using r 52 + ¢2 = 1 one easily checks that

¢u(r) —rKse(r) O
5,(7) ¢ (r) 0] € G,
0 0 1
for all r € R. In the case K = 1 this is a rotation about the es-axis. For x = 0 this is
the identity, hence uninteresting. In the case x = —1 such isometries are called Lorentz

boosts. Similarly, one sees that

() 0 KS(r)
L, := 0 1 0 € Gg.
S5.(r) 0 —ck(r)

Before using these isometries we observe that

¢ (7)
Lre(): 0
k(1)
and
¢k (T) () 0 Kse(r) ¢k (T)
Ll o J= o 1 o 0
55(7) S.(r) 0 —cu(r) 5,5(7)
(1) + ks, (r)?
= 0
5 (1)es(r) — (r)ss(T)
1
=10
0
= €9.

Thus L, interchanges the points ey and (¢, (r), 0,5, (r))".
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Definition 4.5.8.

Let M be a Riemannian manifold. A geodesic triangle
is a 6-tupel VB
(Aa B,C,v4,78, 'YC)’

YA

where A, B,C € M are pairwise disjoint points, v4, v
and ¢ geodesic segments with endpoints B and C, C
and A or A and B, respectively.

A Yc

The points A, B and C are the vertices, the geodesic segments 74, v and ¢ are the
sides of the geodesic triangle. The angle at a vertex is defined to be the angle of the
tangent vectors of the sides at that vertex.

Let (A, B,C,va,7B,7c) a geodesic triangle in M,. The sides
have the lengths a, b and ¢, respectively, and the angles are
denoted by «, 3 and v, respectively.

Here the length of a geodesic segment ~ is defined as the length of the parameter in-
terval x the norm of 4, which is constant. A more general definition of the length of a
differentiable curve in a Riemannian manifold will be introduced later. Since the isom-
etry group of M, acts transitively, we can assume w.l.0.g. that

1
A= €p = 0
0
Applying an isometry of the form
1 0 0

0 cos(p) —sin(p)
0 sin(p) cos(p)

(rotation about the ep-axis) we can rotate B in the eg-ez-plane without moving A = ey.
The formula from Lemma [4.5.6] for the geodesic v¢ with ¢ = 0 and r = ¢ then tells us
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4.5 Trigonometry in spaces of constant curvature

Lemma [4.5.6] for the geodesic yp with ¢ = a and r = b yields
¢ (b)
C=| s.(b)sin(a) | .
5, (b) cos(a)

Hence the isometry L. interchanges the points A and
B and we obtain a new geodesic triangle. On the one
hand one can compute L.C similarly as C itself and
one obtains

¢ (a)
L.C = | s.(a)sin(B) ) .
On the other hand sk (a) cos(f

Thus we obtain the equations:

cu(a) = cx(e)en(b) + Ksk(c)sk(b) cos(a) (Law of Cosines) (1)
s.(a)sin(B) = s,(b)sin(a)

;';((Z)) = ;ZE?) (Law of Sines) )

si(a)cos(B) = su(c)en(b) — cx(c)sk(b) cos(a) 3)

Equation (3) with the roles of B and C interchanged yields
s, (a) cos(y) = s, (b)cy(c) — cu(b)sy(c) cos(a) 4)
Equation (B]) - cos(a) — @) - sin(a)? - sin(3) then yields
s,.(a) cos(B) cos(a) — s, (a) sin(B) sin(a)
= 5,.(c)c (b) cos() — ¢, ()8, (b) cos(a)? — 5,.(b) sin(c)?
Hence

5,(a)(cos(a) cos(8) — sin(a) sin(fB))

D, D)enlo) -

5.(a) cos(7) — 8,.(D)cx(c) cos(a)? — s, (b) sin(a)?
5. (b)cx(c)sin(a)? — s.(a) cos(y) — 5, (D) sin(a)?

=R

s, (a)eg(c)sin(a) sin(B) — s.(a) cos(y) — s, (a) sin(a) sin(B)
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and thus cos(a) cos(5) = ¢k (c) sin(a) sin(f) — cos(y), hence

cos(y) = ¢x(c) sin(a) sin(B) — cos(a) cos(p) (Cosine Rule for Angles).

We have proved

Theorem 4.5.9
Let k € R. For a geodesic triangle in M, with the side lengths a, b, c and the angles o, 3, v
we have

(1) Law of Sines:
sx(a) 5,(D) s(c)

sin(a)  sin(B)  sin(y)’

(2) Law of Cosines (Cosine Rule for Sides):

cu(a) = cx(b)ex(c) + ks, (b)s.(c) - cos(a),

(D) = cu(a)ces(c) + rsg(a)sg(c) - cos(B),
cu(c) = cx(a)eg(b) + rSy(a)s,(b) - cos(y).
(3) Cosine Rule for Angles:
cos(a) = ¢u(a)sin(B)sin(y) — cos(B) cos(7),
cos(8) = ¢x(b)sin(a)sin(y) — cos(a) cos(7y),
cos(y) = ¢x(c)sin(a)sin(f) — cos(a) cos(p).

Now we analyze the sum of angles in the model space of constant curvature.

Theorem 4.5.10
Let € R. For the sum of angles o+ [3 4y of a geodesic triangle in M, with the inner angles
0 <, B,y < 7 we have

> 7, if k>0
a+p+v =7, ife=0
< 7, ifk<0
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4.5 Trigonometry in spaces of constant curvature

k>0 k=20 k<0

Proof. W.lo.g. we assume that o > (. For this proof we will use the notation “;” for
“<” if k>0, for “=",if Kk = 0, and for “>", if kK < 0. We have —« § 0, for instance.
If is k > 0, then M, is the sphere of radius ﬁ Thus in this case the side lengths have

to be < 2—\/7% In the case ~ < 0, we do not have any bounds on the side lengths. We use

the convention ﬁ = o0, if Kk < 0. With this convention we have in all cases

1

VIA

Cr

27

in the interval (0, NG

). Since sin is positive on (0, 7) the Cosine Rule for Angles yields

cos(a) = ¢x(a)sin(B)sin(y) — cos(B) cos(v)
< sin(B)sin(y) — cos(8) cos()
= —cos(B+7)
= cos(m = (B+7))
= cos(f+y—m).

Since 0 < 3,7 < mwehave -7 < 7w — (f+7) <.

First case: m — (B + ) > 0.
Since cos is strictly monotonically decreasing on [0,7], the relation

cos(a) = cos(m — (B+7)) yields m — (8 +v) = aand thus 7 = o + 8+ v. This

>
is what we wanted to show.

Second Case: m — (8 +v) < 0.
If Kk > 0, weobtain ™ < 8+ v < a+ (8 +  directly, which proves the claim. Hence, let
x < 0. Then from cos(a) > cos( + v — m) we may deduce that o < § + v — 7. Since
a > B and v < 7 this implies

o< oa+7T—T =0,

giving a contradiction. O

Remark 4.5.11. Since the inner angles are < 7, we always have for the sum of angles in
a geodesic triangle a + 8 + v < 3. It is easy to see that for M, with x > 0 the sum of
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angles of a geodesic triangle can take all values in (7, 37). For M, with x < 0 all values
of the interval (0, 7) occur.
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5 Riemannian Geometry

From now on we concentrate on Riemannian geometry, that is, on semi-Riemannian
manifolds whose metric is positive definite and hence defines a Euclidean scalar prod-
uct on each tangent space. One special feature of the Riemannian case is that each
connected Riemannian manifold naturally becomes a metric space.

5.1 The Riemannian distance function

General Assumption. Let M be a connected Riemannian manifold and let (-, -) denote
the Riemannian metric.

Definition 5.1.1. Let ¢ : [a,b] — M be a continuous piecewise C'-curve. Then we

call
b

Ifd = / lé(t)] dt

a

the length of c.

Remark 5.1.2. The length does not depend on the parametrization of the curve.
Namely, if ¢ : [a, b] — [, (] is a parameter transformation, then we have

teod = [ [Scono] a

lete(@N - lp(8)] dt

b
a
K\ B
Substitution / .

s =(t)

143
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Definition 5.1.3. Let p,q € M. Then we call
d(p,q) = inf {L[c] | ¢ : [a,b] — M piecewise C'-curve with c(a) = p, c(b) = ¢}

the Riemannian distance of p and gq.

Remark 5.1.4. The infimum is, in general, not a minimum. In other words, there need
not exist a shortest curve connection p and q.

Example 5.1.5 R™
M =R"\ {0} and p = —q. We have d(p, q) = 2|p], but o ~F
every curve ¢ from p to ¢ has length L[c] > 2 |p|. q

Theorem 5.1.6 (Gaufs lemma)

Let p € M and £ € T,M. The geodesic v(t) = T,M 7

exp, (t§) is supposed to be defined on [0, b].
Then exp,, is defined on an open neighborhood of 0 &
{t&|0 <t < b} C T, M and we have

(i) dexp, |(€) = F(1).

(ii) Forn € Ty T,M = T,,M we have

(dexpy, |1 (n),¥(t)) = (n,€) -

In particular, dexp,, | (n) L (t), if n L &.

. d d .
Proof. (i) We compute dexp,, |(§) = I exp,(t& +5&)|s=0 = T Yt + 8)|s=0 = F(t).
(ii) By (i) it suffices to consider the case n L £. Let J be the Jacobi field along v with
J(0) = 0 and ¥ J(0) = 7. PropositionB4.13]yields

J(#)

dexp, |ie(n) = - fort > 0.
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5.1 The Riemannian distance function

Since both J and ¥.J are perpendicular to 4 at ¢ = 0, this holds for all t. We conclude

. J(t) .
(desp, et 3(0) = (I 50) 0= (6. 0
We now consider the diffeomorphism
— xT
®: T, M\ {0} — (0,00) x §"7, v=t-y= )= (el )

where "1 C T, M is the unit sphere in the tangent space. There exists an r > 0, such
that exp, maps B(0,7) C T,M diffeomorphically onto a neighborhood U of p in M.
Then the map

(0,r) x S" 1 = U\{p}, (t,y) — exp,(ty),

is a diffeomorphism. Now let 32, ..., y" be local coordinates on an open set U; C S™ 1.
Then the coordinates given by the diffeomorphism

expp(ty) = (t? y27 R ?yn)?

are called geodesic polar coordinates.
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Corollary 5.1.7
Let r > 0 so small that exp, | (o - is a diffeomorphism on its image. Let c : [a,b] — M bea
piecewise C'-curve with c(a) = p and ¢(b) & exp,(B(0,r)). Then Llc] > r.

Proof. Let 8 € (a,b) be minimal such that ¢(3) € dexp,(B(0,r)) = exp, (5" !(r)). Let
a € [a, ) maximal such that ¢(a) = p. Now it is ensured that for 7 € (a, ) the curve
c(r) lies in exp,(B(0,7)) \ {p}. For 7 € (a, 8] we write

&(1) = exp,”'(c(r)) = t(r) - y(7)

where t(7) := [|&(7)| € (0,r] and y(7) := |28|| € S" 1. Let £ be the unit vector
field on T, M \ {0} which corresponds to £(z) = ﬁ under the canonical isomorphism
T, T,M = T,M. Using the diffeomorphism exp, we transport this vector field to the

manifold, that is, on exp,(B(0,7)) \ {p} we set

£(q) := dexp, (g(exppfl(q)» .

The first part of the Gauf8 lemma implies |£| = 1. Because of

d dt dy
e =gy ) EO
—een) L&)
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5.1 The Riemannian distance function

Thus we get

L[]

IV
h
=
T
=

Schwarz >
inequality

i

o )
Cauﬁ:}\ j . epr

[0

i

(6%

Theorem 5.1.8
(M, d) is a metric space.

Proof. a) Obviously we have d(p,¢) > 0 and d(p, p) = 0 because the constant curve has
length 0. Now let p # q. We have to show d(p, ¢) > 0. Choose r > 0 such that exp, | 5(o,»)
is a diffeomorphism and ¢ ¢ exp,,(B(0,7)). Then by Corollary 5.1.7 every curve from p
to ¢ has length r at least. Hence d(p, ¢) > r > 0.

b) Symmetry d(p, ¢) = d(q,p) is clear. Simply traverse the curves in the opposite direc-
tion.

¢) It remains to show the triangle inequality d(p, qg < d(p,r)+d(r,q).
Let ¢ > 0. Choose a continuous piecewise C"-
curves ¢; from p to r with L[c;] < d(p,r) + ¢ and o
o from r to g with L[es] < d(r, q) +¢. Now concate- 1
nate c¢; and ¢, to a continuous piecewise C' Lcurve ¢
from p to q. Then we have

p

d(p,q) < L[c] = Lle1] + Lleo] < d(p,r) + e+ d(r,q) +e.

Taking the limit ¢ \, 0 yields the assertion. O
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Notation 5.1.9. For p € M and r > 0 set

B(p,r):={q € M|d(p,q) <1},
B(p,r) :={q€ M|d(p,q) <7},
S(p,r) =={q€ M|d(p,q) =r}.

Definition 5.1.10. Forp € M
injrad(p) := sup{r | exp, g, : B(0,7) — exp, (B(0,r)) is diffeomorphism}

is called the injectivity radius of M at p.

Example 5.1.11. The injectivity radius depends on p.

here injrad is small

Remark 5.1.12. For 0 < r < injrad(p) we have exp,(B(0,7)) = B(p,r). Namely:

“C”: Letq = exp,(§) with [{] < r. Thent > exp,(t£), t € [0,1], is a curve from p to ¢
with length |¢]| < . Hence d(¢,p) < r,ie., q € B(p,r).

“>”: Corollary

Theorem 5.1.13
The metric d induces the original topology on M.
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Proof. For the moment we denote the open subsets w.r.t. d of M as “d-open”. We have

to show: d-open = open.

a) Claim: Every d-open set is open.

Let U C M be d-open. For every p € U there exists a r(p) > 0, such that B(p,r(p)) C U.

W.lo.g. let r(p) < injrad(p). Then B(p,7(p)) = exp,(B(0,7(p))) is the diffeomorphic
———

openin Tp, M
image of an open subset of 7,,M. Hence it is open itself. Therefore U = |J B(p,r(p))
pEM
is the union of open subsets of M and thus open.
b) Claim: Every open set is d-open. The proof is similar. O

Corollary 5.1.14
The map d : M x M — R is continuous.

Remark 5.1.15. If & € Isom(M). Then we have L[® o ¢] = L|¢| and thus also
d(2(p), ®(q)) = d(p, q)-

b
Recall that E[c] = 3 [ |é(t)]? dt is the energy of c.

Proposition 5.1.16
Let M be a Riemannian manifold and c : [a,b] — M be a continuous, piecewise C-curove.
Then we have

L[> <2(b—a)- E|d].

Equality holds if and only if c is parametrized proportional to arc-length.

Proof. With the Cauchy Schwarz inequality for the L2-scalar product we obtain:

b 2 b b
L2 = (/ c'(t)-ldt) g/uc'(t)u? dt-/let — 9Bl (b—a).
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Equality holds if and only if |¢| and 1 (as a function) are linearly dependent. This means
that | ¢| is constant, i.e., that ¢ is parametrized proportionally to arc-length. O

Corollary 5.1.17
A curve c minimizes the energy in the set of all continuous piecewise C-curves connecting p
and q if and only if ¢ minimizes the length and is parametrized proportionally to arc-length.

Remark 5.1.18. By Corollary 2.6.10lenergy minimizing curves are geodesics.

Corollary 5.1.19
Every shortest curve from p to q is a geodesic up to parametrization. It is a geodesic if and
only if it is parametrized proportionally to arc-length.

Caution! The converse is not true. Not every geodesic is a shortest curve connecting its
endpoints.

Example 5.1.20. Great circles on S™ are geodesics connecting points to themselves. But
the only shortest curves connecting a point to itself are constant curves which have
length 0.

Definition 5.1.21. A geodesic v : [a,b] — M with L[y] = d(v(a),~(b)) is called mini-
mal.
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5.2 Completeness

General Assumption. Throughout this section let M be a connected Riemannian ma-
nifold.

Definition 5.2.1. Let p € M. Then M is called geodesically complete at p if exp,, is
defined on all of T,,M, i.e., if all geodesics through p are defined on all of R.

Theorem 5.2.2 (Hopf-Rinow)
Let M be a connected Riemannian manifold and p € M. Then the following assertions are
equivalent:

(1) M is geodesically complete at p.

(2) M ist geodesically complete at all ¢ € M.

(3) The closed balls B(p,r) are compact for all r > 0.

(4) The closed balls B(q,r) are compact for all r > 0 and all ¢ € M.

(5) (M, d) is complete as a metric space, i.e., all d-Cauchy sequences converge.
All of these conditions imply in addition

(6) Every point q can be joined with p by a minimal geodesic.

Remark 5.2.3. Assertion (6) is weaker than (1) through (5). .~ ;)\’\

Example 5.2.4. Let M = {z € R"| |z| < 1} with the Euclidean »\4»/ )
metric. Then M satisfies (6), but not (1)—(5). TN /

Definition 5.2.5. If the equivalent conditions (1)—(5) in Theorem[5.2.2/hold, then one
calls M a complete Riemannian manifold.
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Corollary 5.2.6
Every compact Riemannian manifold is complete.

Proof of Corollary[5.2.6l We check condition (3) in the Hopf-Rinow theorem. Indeed,

B(p,r) C M is a closed subset of the compact space M and thus compact itself. O

Proof of Theorem [5.2.21 We will prove this theorem in five steps. The structure of the
proof is as follows:

trivial

) 2) 25 1) & (6)
—————

(:\ J @

4 % (3)

a) Let v : (o, 3) — M be a geodesic with maximal domain of definition. W.l.o.g. we
assume that v is parametrized by arc-length.
We assume 3 < oo (the case & > —oo is analogous). Then we have for a sequence

1—00

t; € (o, p) with t; — 3, that
d(y(ti),v(t5)) < LIVl e, = [ti — t51-

Hence (v(¢;))ien is a d-Cauchy-sequence. Since (M, d) is complete there exists a
q € M with ~v(t;) =% ¢.
1. Claim: The limit point q does not depend on the choice of the sequence (t;)ien with
t; =X 8.
Proof. If (t})icn is another such sequence with ¢’ = lim;_, (#;), then also (¢} );en is
such a sequence, where

gt i=2

T, i=2+1

The sequence (y(t/));en is a d-Cauchy-sequence with accumulation points ¢ and ¢'.
We thus have ¢ = ¢/. This proves the first claim. O

Thus we obtain a continuous continuation 7 : («, 5] — M of v by

5(t) = { ’Y(qt)i e (ﬁa,ﬁ)

2. Claim: The velocity field + also has a continuous extension to («, f3].
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Proof. Letx : U — V be a chart of M around ¢ with z(q) = 0. Choose r > 0 such that
B(0,r) C V. Since B(0,r) is compact, there exist constants Cy, Cz, Cy > 0 with

rg:;.(y)( < ¢, forally € B(0,r).

n

> @5 (27 (y))

Jj=1

< (9

o [a] .y < foralla = (a',...,a") € R"and y € B(0,7).

g
ork

ij

Ozl

(y)‘ < Cy forally € B(0,r).

Choose € > 0 small enough so that v(t) € 27 1(B(0,r)) fort € (8 — &, 3). Write

7% := 2% 0 v and @ := 4*. By the equations for geodesics we obtain:

n n
it =5F == 3T TH(G ) A = = 3D TRG ) dld

5,j=1 ij=1

and hence

@[ <n?-cyJall,,
This implies

HaHmaX < 7’L201 ' ”a”rznax < n201 ’ 022 HPYHg2 - n201022 = C3.
——
=1
We get
tj tj
Ha(tz) B a(tj)"max = /a(t) dt < /Ha(t)wmax dt < C3 ‘tz - t]’ .
ti t;

max

Thus the a(t;) form a Cauchy sequence in R™ and hence converge to some A € R".
As before A is independent of the special choice of the sequence (¢;);eny with ¢; =
B. Thus we obtain a continuous extension of a by
(t) - a’(t)7 t e (/8_57/8)

A t=p
Hence the velocity field 7 is extended continuously to ¢ = . This shows that the
extension 7 of vy is C'!. O

Differentiation of the geodesics equations yields

k
ik = — Zn: <Zn: %alaiaj + ok diaj>
N ox! K

ij=1 \i=1
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d)

This implies

<n®Cylal?,.. +2n2Cy |a|

max — max

< n? C4C23 + on? C1C3C,

=: Cjs

lal |al

max max

As before we see that (a(t;))ien forms a d-Cauchy-sequence in R". This shows that
the extension 4 is even a C%-curve. By continuity it satisfies the geodesic equation
alsoatt = 4.

Now let 4 : (8 — 8,8 + ) — M be the geodesic with 4(8) = 7(3) and 4(8) = F(3).
Since geodesics are uniquely determined by their initial values, ¥ and ¥ coincide on
their common domain of definition. This yields a continuation of v as a geodesic on
(o, B+ 6). This contradicts the maximality of 5 and thus shows (2).

Let all closed balls in M be compact. Let (p;)icn be a Cauchy sequence in M. Since
Cauchy sequences are bounded, there existsa R > 0 such that p; € B(p, R) foralli €
N. Since B(p, R) is compact, the Cauchy sequence (p;);cn has an accumulation point
q € B(p, R). Since accumulation points of Cauchy sequences are unique, (p;)ien
converges to q.

Let all B(p,) be compact for all » > 0. Letq € M
and let R > 0. Setr := R+ d(p, q). Then

B(q, R) C B(p,r), @

because for z € B(q, R) we have

d(z,p) < d(z,q) +d(q,p) < R+d(q,p) =r.
Hence B(q, R) is a closed subset of the compact set B(p, ) and therefore it is compact
itself.

Let (p;)ien be a sequence in B(p,r). We have to show that (p;);en possesses a con-
vergent subsequence.

By (6) there exist minimal geodesics v; with 7;(0) = p and 7;(¢;) = p; for suitable ¢;.
W.lo.g. let ; be parametrized by to arc-length. Then ¢; =
Llv] = d(p,pi) <.

The 4;(0) are unit vectors in 7,,M. Since S"~1(1) C T,M is

compact we have, after passing to a suitable subsequence,

i—00

4:(0) =¥ X € Sn —1(1) C T, M.

The ¢; lie in the compact interval [0, r]. After passing to a subsequence again, ¢; iz

T € [0, 7] converges too. Set q := exp,(T - X). This definition is possible because of
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e)

(1). We now have

lim p; = lim exp, (t; - %:(0)) = exp, ( lim ti4i(0)) = exp,(TX) = ¢.

1—00 1—00 v
This proves (3).
Let ¢ € M. We already know, that we can find minimal geodesics from p to ¢, if

q € B(p,injrad(p)).

Let c¢; be continuous piecewise Cl-curves
from p to q with L{c;] = d(p,q) + & with
€k \1 0.

We assume ¢ ¢ B(p,injrad(p)) because oth-

erwise we are finished. Choose 0 < 79 <
injrad(p). Then

S(p,mo) = exp,, (Sn_l(ro))

is compact. Let ¢, be the first intersection point of ¢;, with S(p, ). After passing to
a subsequence, g;, possesses a limit § € S(p, 7). We have

k—00

= d(p.q) <d(p.q) +d(q.q) < d(p.q)

= d(p,q) =d(p,q) +d(q,q)
Let v be the unique minimal geodesic that connects p with g. We parametrize v by
arc-length. With (1) we can extend v to [0, d(p, ¢)].

It remains to show that v : [0, d(p, ¢)] — M is a minimal geodesic from p to g. Set

I:={t€0,d(p,q)]|d(p,7(t)) =t and d(p,¥(t)) + d(~(t),q) = d(p,q) }.

We have seen that [0,79] C I. Set ¢ty := sup(I). We have to show that ¢ty = d(p, q)
because then

d(y(to),q) = d(p,q) — d(v(to),p) = d(p,q) —to =0,

which implies v(¢y) = ¢ and that y is a minimal geodesic from p to q.
We therefore assume that ty < d(p, q¢) from which
we have to derive a contradiction. Set ¢’ := (o).
Choose 0 < r1 < d(p, q) —to such that B(¢/,r1)isa P
normal coordinate neighborhood. As above, there
existsa ¢ € dB(¢',r1) with

Qe

d(d,q) +d(d,q) = d(d,q).

Now let y; be a minimal geodesic, parametrized by arc-length, with v, (t9) = ¢’ and
Y(to +71) =7
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= d(p,q) < d(p,q¢)+d(d,7)
= d(p,¢)+d(d,q) —d(d,q)
= d(p,q) —d(d,q) +d(d',q) — d(T',q)
= d(p,q) —d(7,q)
< d(p,q)
= dp,q) = dp,q¢)+d(d,q)

= The curve /(g 4,] U Y1l}z9,t0+r1] 15 @ shortest.

= to+r1 € 1. This contradicts the maximality of ¢;. We have proved (6). [

5.3 The second variation of the energy

We recall: If ¢, is a C%-variation of ¢ : [a,b] — M with vari-
ational field &, then the first variation formula (Theorem § EEE ii
2.6.5) says: 55

b

js cs ‘s 0= f <§7 %C> dt+ <§7C> ’g

a

If ¢, is continuous and only piecewise C?, that is,
there exists a partitiona =ty < t; < --- <ty =,
such that (s,t) — ¢4(t) is continuous on (—¢, €) X [a, b]
and C? on (—¢,¢) x [t;_1,t;], then we have

N

d d

ds [Cs ’s 0o = d_ g Cs’[tl 1,t4] ‘s 0
=1

= Z( a < >dt+ E(ti), e(t;)) — (E(ti-n), (tf)>>

N
= = (e ) o (€0 07) ~ fela et + 3 (ete. ) - )

Question: If ¢ is a continuous and only piecewise C2-curve with 4 E[c,]|;—9 = 0 for all
continuous, piecewise C?-variations ¢, with fixed endpoints, does ¢ then have to be a
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geodesic (and thus in particular C*°)?

Answer: Yes. Namely: First of all, consider only such varia-
tions with £(¢;) = 0 for all ¢ € {0,..., N}, then it follows as
in the proof of Corollary Z6.I0that ¥¢ = 0 on every [t;_1, t;]
fori=1,...,N.

= The curve cis piecewise a geodesic.

If ¢(t;) # é(t]) forani € {1,..., N — 1} then we can choose an 1) € T,;,) M with

i

(m,é(t;) — () > 0.

Now continue 7 via parallel transport along c. Choose a smooth function ¢ : R = R
with ¢(t;)) = 1and ¢ = 0on R\ (t;—1,t41). Set &(t) := ¢(t)n(t). Then we have
&(a) = £(b) = 0 and thus

d

0= Eles]ls=0 = (Et;),e(t;) — e(th)) = (. ety) — éth)) > 0.

This is a contradiction. We summarize:

Theorem 5.3.1
Let M be a semi-Riemannian manifold and c : [a,b] — M be a continuous, piecewise C?-
curve. Then for every continuous piecewise C*-variation cs of ¢ with variational field & we

have
fv
= / <s, aé> dt + (€, )

a

where a = tg < t1 < --- < tny = b is a partition for which both c and cs are C? on the
intervals [t;—1,t;],i=1,...N.
The curve c is a geodesic if and only if for all such variations with fixed endpoints we have

d
— Ele,
ds les]

b N—-1
+ (), e(t7) — eth),
a =1

d
— F A
- Bles]

s=0

To investigate the minima of the energy, we have to consider the second variation of
the energy.
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Theorem 5.3.2 (Second Variation of the energy)
Let M be a semi-Riemannian manifold. Let ¢ : [a,b] — M be a geodesic. Let cs be a C3-
variation of ¢ with variational field £ and fixed endpoints. Then we have
d? r V.V
= — &, —&) — (R(&¢)¢ dt.
= [((Feme) - meane)

a2 Elee]

Proof. In the proof of Theorem[2.6.5lwe have already shown that
b

d V Ocgs Ocg
s Flesl = / <§a— ot > dt
holds for all s, not just for s = 0. Therefore

b
vV Vol . vV Vo
_ vv V.V dt
Y /<<as 9t s SO’C>+ <dt Sl 0>>

b b b
V V| . ne V.V
= / <§£ Os Sovc> dt—|—/<R(§,C)§,C> dt+ / <E§7 %§> dt.

a a a

d2
ds?

Elcs]

The assertion follows from
b

b
/ VVoe . dt—/ 0 [V 0l N _ (YOl VA g
Ot ds 0s |,_, N Ot \0s 0s |,_q Js Os |,_, dt
a a —~
V Ocg AP
B <£ 0s s:076> a - 07
because c; is a variation with fixed endpoints. O

5.4 The Bonnet-Myers theorem

Definition 5.4.1. Let M be a connected Riemannian manifold. Then we call

diam (M) := sup{d(p, q) | p,q € M} € (0,00

the diameter of M.
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Example 5.4.2. For M = S" equipped with the standard metric ¢ = gsq we have
diam(S™) = w. For M = R" with the Euclidean metric ¢ = geyq and for hyperbolic
space M = H" with g = gy, we have diam(R") = diam(H") = cc.

Remark 5.4.3. If M is complete then
diam(M) < co <« M is compact.

Namely:

“<"”: M is compact = M x M is compact = d : M x M — R is bounded and attains
its maximum C' = diam(M) = C < oo.

“=": If diam(M) =: R < oo, then for arbitrary p € M we have M = B(p, R). Hence
M is compact by the Hopf-Rinow Theorem[5.2.2]

Theorem 5.4.4 (Bonnet-Myers)
Let M be a complete connected Riemannian manifold of dimension n. Assume there exists a
k > 0 such that
ric > k(n — 1)g.
This means that ric(&,&) > k(n — 1)g(&,€) forall £ € TM. Then M is compact and we

have:
diam(M) <

Bk

Example 5.4.5
(1) Let M = S™ with g = a? - gsq where « is a positive constant. Then we have

1
diam(M) = am, KE?, ric = 59

= diam(M) = T andric = k(n —1)g with k =

NG

This shows that the estimate in the Bonnet-Myers theorem is optimal and cannot be
improved.

a?’

(2) Now let M = RP" with g = gs4. Since RP" is locally isometric to S™, we have as for
the sphere ric = (n — 1)g. But diam(RP") = 7. Here we find diam(M) < Tn where
k=1
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Proof of Theorem[5.4.4] Let p,q € M with p # ¢. Set 6 := d(p,¢). Since M is complete,
there exists a minimal geodesic from p to ¢ by the Hopf-Rinow theorem. W.l.o.g. let
7 : [0,0] — M be parametrized by arc-length with v(0) = p and v(6) = ¢.

Let e € T,M with e L #4(0) and |e| = 1. Let e(t) be the vector field along v obtained
from e by parallel transport. Set

&(t) :=sin (%t) -e(t).

Let 75(t) be a variation of v with fixed endpoints and vari-
ational field &, for example

"s(t) = expey) (s - £(1))-

Since v is a minimal geodesic, we have

d
=—F s|ls=
0= = Blbule=o
and 2
0 S @ E[’Ys”szo
5 _—
-/ (H@f - <R<fs,w>w,fs>> at
0
4 2 2
T . (T N
= / <‘ — COS <St> e(t)“ — sin <St> (R(e,’y)’y,e)) dt
0
4 2 2 2
T ™ . T .
= / <§ cos <St> -1 —sin (gt) K(e,’y)) dt.
0
If e1,...,e,—1 is a orthonormal basis of "y(O)l, we obtain with e = ¢; and summation
over i:
4 2 2 2
™ T ™
< N7 ™ (T C
0< / <(n 1) 53 C08 (5 t> sin <5 t) ric(%, ) > dt
0 > (n—1)k-1
4 2 2 2
™ T
< _ o o h .
(n 1)/<52005(5t> 51n< t) /@>dt
0
172 — k2
=575
Therefore 0 < 72 — k6% and hence § < % Since this holds for all choices of p and g we
conclude -
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By Remark[5.4.3] M is compact. O

The theorem tells us that the larger the Ricci curvature of a Riemannian manifold, the
smaller the manifold.
Note that the following general implications hold:

K>k = ric>(n—1)k-g = scal>n(n—1)k. (1)

Thus the Bonnet-Myers theorem also holds if the sectional curvature is bounded from
below by a postive constant, X' > « > 0. Does the Bonnet-Myers theorem also hold

under the weaker condition scal > n(n — 1)x?
The answer is “no” as we see by the following counterex-

ample. If M; and M, are Riemannian manifolds and if
M := M; x M, carries the product metric, then

gy (&1 + &2,m +12) = g, (§1,m) + gar, (§2,1m2).
——

€Tp, M1®Tp, M2
=Tp1 o) M

RMi(&,m) | 0 >
0 | RM2(¢3,12)

- M
ric 0
- M
= ric = ;
< 0 ricMz >

= scal™ = scal™ 4+ scal2,

For n > 3 we obtain with M = S*! x R that

= RM(&+&m+m) = (

scal =(n—1)(n—2)+0=(n—1)(n—2),
but diam(M) = co. Thus the Bonnet-Myers theorem does not hold under the weaker

condition scal > n(n — 1)k if n > 3.
For n = 2 on the other hand, the three conditions in (1)) are equivalent.
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Einstein summation convention,
Einstein tensor,
energy functional
critical point,
energy of a curve,
exponential map, Riemannian,

first fundamental form, [47]
fixed point set,

flat manifold,

fundamental form, first, 1]
fundamental form, second,[I17]

Gauf8 curvature,

Gauf formula, 118

Gauf$ formula for hypersurfaces, 126l
Gauf8 lemma, [144]

generalized cosine function, [101]
generalized orthonormal basis, 36 [74]
generalized sine function, 101
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geodesic,
geodesic polar coordinates,
geodesic triangle,
geodesic variation,
geodesic, minimal,
geodesically complete, [I57]
geodesics
existence and uniqueness of,
Gradient of a differentiable function,
[124]

homeomorphic, locally,
homeomorphism, [I]

Hopf-Rinow, Theorem of, [I51]
hyperbolic space, 128

hypersurface, semi-Riemannian, 123

index,

injectivity radius, 148
inverse function theorem,
isometry, 44l

isometry group, 44l
isometry, linear,

isometry, local, [44]

Jacobi equation,

Jacobi field,
interesting,
uninteresting,

Law of Cosines,

Law of Sines,

length of a curve, [143]

Levi-Civita connection,

lightcone,

local coordinate system, [l

local diffeomorphism, 21]

locally homeomorphic,

Lorentz boost, [137]

Lorentz group, [130]

Lorentz manifold,

Lorentz metric,

Lorentz transformations, time-
orientation preserving,

manifold, (semi-)Riemannian, 42|
manifold, differentiable, [14]
manifold, Riemannian,
manifold, topological, []

map, differentiable, [14]

maximal atlas, [[4]

metric, Lorentz-, [42]

metric, Riemannian,

metric, semi-Riemannian,
minimal geodesic, [I50]
Minkowski scalar product, 43
Minkowski space, 43]

model space, [133]

Modelspace of constant curvature, 133
motion, Euclidean, [45]

non-degenerate bilinear form,
non-degenerate subvector space,
normal coordinates, Riemannian,
normal space, 114

null curve,

open,[II
orthonormal basis, generalized, 36, [74]

parallel transport, [61]
parallel transport on the sphere, web-
site,
parallel vector field along a curve,
parametrization of a curve
by arc-length,
by proper time, [69]
proportional to arc-length,
proportional to proper time, [69]
Poincaré transformations,
polar coordinates, 33|
polar coordinates, geodesic, [145]
proper time,
pseudo-hyperbolic space, [126]
pseudo-sphere,[127]
Pseudosphere,[126]
pullback of a metric, 44]

real-projective space, [7]
regular point,
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regular value, [109] velocity field,
Ricci curvature, vertex of a geodesic triangle,

Riemann curvature tensor, 81
Riemannian (4, 0)-curvature tensor, 85
Riemannian distance, [144]
Riemannian exponential map,
Riemannian metric,

Riemannian normal coordinates,

Weingarten map,

Sard, theorem of, 110l

scalar curvature,

second covariant derivative, [/9
second fundamental form, {17
sectional curvature,
semi-Riemannian metric,

side of a geodesic triangle, 138
signature of a hypersurface,[123]
sine function, generalized, 10]]
Sines, Law of,

standard metric, 2]

stereographic projection, 3]
submanifold chart,
submanifold, differentiable,
submanifold, semi-Riemannian, 113]
submanifold, totally geodesic, [121]
symmetric bilinear form,

tangent bundle, [31]

tangent space, [18]

tangent vector, [I7]

topological space, [1I

topology, (Il

torsion freeness, 50,

torsion-free, 48|

totally geodesic submanifold, 121]
transformation of principal axes, [36}
triangle, geodesic, 138

variation of a curve, [64]

variation of the energy, second, [157]
variation of the energy, first,
variation, geodesic,97]

variational vector field,

vector field, 33|

vector field along a map,
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