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A time lapse photo of the transit of venus across the sun



The transit of venus across the sun at sunset



Satellite image of a cyclone



Smooth Case — use invariants and moving frames.
— EXxpose the structure of equations and laws.

— Combat expression swell.

Discrete Case — embedding the physics via the Lie
symmetry into the numerics.

— Finite Difference — structure mirrors that of the smooth
case.

— Finite Element — very different look and feel.
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Via the chain rule, induce an action on wu, etc:
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Lowest order invariant is the so-called Schwarzian derivative,
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Suppose our Lagrangian is

L( ) da = i{-}zﬁ{-}?d
T, U, Ug,y...,Uzzrrs Tr = de u, T 5 U, T x.

Then this is invariant under the induced action of SL(2) and
there are three first integrals, one for each dimension of SL(2).

The Euler—Lagrange equation has order 10, and one of the first
integrals is:



Using Maple's DifferentialGeometry package
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We can use the Lie group action to cut down the expression
swell. We can use the power of the Lie group based moving
frames to derive Euler—Lagrange equations and conservation
laws, directly using the invariant calculus, with links to Lie
group integrators:

ELM, A practical guide to the invariant calculus, Cambridge
Univ., Press., 2010.

T.M.N. Goncalves and ELM, Moving frames and Noether’s

conservation laws — the general case. Forum of Math., Sigma,
(2016).

Results in terms of a trivariational complex: I. Kogan and P.J. Olver, Acta
Appl. Math 76 (2003)



From mathematical wallpaper to structure
Extend the projective SL(2) action to include a dummy variable

- r = -t=1 .u_au—l—b
g 3 g ; g cu+ d
a b
g = , ad—bc=1
c d

Again, via the chain rule, induce an action on wu¢, Uy, Uppt - -

_ (g - u) _ Ut
(g-t)  (cu+d)?
Same symbolic result from either of:

% 6:OE[u + ev] <« %L[u], vV > Uy

ut



Lowest order invariants are now

2
o U 3u
W — —, V = e _ —LQCE L= {u, 33}
U U 2 uz

W is the invariantised variation and we need vary only in the
direction of invariants.

V and W are functionally independent, but there is a
differential identity or syzygy,
a o3 %,

& _<87+2V8:B+V$)W

The syzygy plays a key role in finding the Euler Lagrange
equations directly in terms of the invariants, for a Lie group
invariant Lagrangian.
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= [H* (EV(L)) W dz+ more B.T's
where H* is the adjoint of H. Thus in this case,
EY(L) =0 < H* (EV(L)) = 0.
and for this syzygy operator, it just so happens that H* = —H.



For Lagrangians of the form [ L(V,Vg,...)dx where V = {u; x},
the laws can be written as

[ @ —ae - ) [ 2 BV(L) + VEV(L) )
c=| —2ab ad+be 2de —29 EV(L)
2 bd  d? —2EY (L
\ b ) o=\ S
R(g)—1
where
1
0 a = : b= — ¢ : c= Yoo : ad—bc = 1.
/U A/ U 2(?1/33)3/2

Which representation yields R(g)? How to find p? And how to
calculate the vector of invariants directly?



Answers and observations:

( cl ) ( a? —ac  —c? \ ( 82 S EV(L) + VEY(L) \
2 | =| —2ab ad+bc 2dc —Q%EV(L)
3 12 2 _ |4
R(g)~1
=1 b= —— =_% d—bc =1
p a = Nz = c= TONEL ad—bc = 1.

e \We have three equations for w, uy and wuyr. Writing the
vector of invariants as (vl,v? v3)T and simplifying yields

46163+(62)2 — 4’01’03—|—(’02)2

v3ux — —cly? -+ c2u -+ c3



A moving frame is an equivariant map p . M — G where

e in our case, M is the jet space with coordinates

(z,u, uz, Ugy,...)
e (G is the Lie group, SL(2)
e and equivariant means,

p(ng,g U, g Ugx, J - Ugx, - - ) — p(w,u,ux,uxx, .. ')g_1°

Noether’'s Theorem has calculated a moving frame without
knowing any theory of such things.



But we do know about the theory of such things, and can use
it to prove* theorems!

For smooth variational problems in dimension p, we obtain the
conservation laws in terms of the Adjoint representation of a
moving frame, p invariant vectors and p invariant 1-forms which
are easy to calculate with, symbolically.

Simplest expression, with no group action on the base space:
d _
> o —Ad(p) (1) =0
i 2l

where the v; are known, once you have solved the Euler
LLagrange system for the invariants.

*T.M.N. Goncalves and E.L. Mansfield, Moving Frames and Noether’'s Con-
servation Laws — the General Case, Forum of Mathematics, Sigma 4 (2016)
DOI: https://doi.org/10.1017/fms.2016.24



Strong use is made of the Fels and Olver! rewrite of Cartan’s
moving frame method, subsequently developed by Hubert,
Kogan, and other authors, and as detailed in my bookH.

Moving frames can be used to describe complete, or
generating, sets of invariants and their relations.

There are excellent algorithms to manipulate quantities derived
from moving frames in symbolic computation environments.

Moving frames are flexible, to allow for ease of computation in
specific applications, and they satisfy equations that allow them
to be obtained numerically (if necessary).

fFels and Olver, Acta App. Math 51 (1998) and 55 (1999)

tE.L. Mansfield, A practical guide to the invariant calculus, Cambridge Mono-
graphs on Applied and Computational Mathematics Volume 26, Cambridge
University Press, Cambridge, 2010.



Smooth versus Finite Difference Calculus of Variations$

Basic Step
SMOOTH FIN. DIFF.
fclz)fg:c dxr = —fc?f:cg dz 2 Ingnt1 = 2 fn-10n
—+ S —id _
L falt (8 — ) (n-19n)
telescoping sum
The L, adjoint of f—x The /> adjoint of the
is — L. Shift map S is S~1.
The operator & The operator S
iS a derivation, iIs @ homomorphism,
i.e. the product rule. S(fg) = S(f)S(g).

The operator S — id is the required total difference operator for
a conservation law, but is otherwise useless.

SKuperschmidt: Hydon and Mansfield, FOoCM 2004



For smooth L[u] = [ L(x,u,ug,...,un,)dz, the Euler—Lagrange
equation is

= 0.

BN L) =Y (_ddw)j OL

8ujx

For finite difference Lu] = > L(n,un, Up+1,---,u,4+n), the
Euler—Lagrange equation is

The boundary terms which give rise to the Noether laws have
the same kind of relationship. Many authors have discovered
finite difference Noether laws. Most general

differential-difference results by L. Peng, Studies Applied Math.



Simplest Example¥
The finite difference approximation of [ (th + V(w)) dt is

2
1l /x —x
SIS () 4 V@) | (g — to)
0=FE% (L)={k+5 1—8mi€r .
=(5— 1 Id)(%> dxn(tn+1 —tn)
0=ELN(L)=8E+5"15 3L -=(5- |d)( S—latifjrl)

2
1 (Zn4+1"Tn —
= —5 (tn+1_tn) + V(xn,) = constant

The constant of integration is due to invariance under
translation in ¢, — tn, + €. Also 3 a conserved symplectic form!

IT.D Lee, 1987, J. Stat. Phys., Introduction.



For difference variational methods, we have similar results on
the difference Noether Theoreml ,

0 = Y (5; —id)Ad(po) " v (1) = 0.

This time we use a discrete moving frame, as developed by
myself and Gloria Mari Beffa™*.

IE.L. Mansfield, A. Rojo—Echeburta, L. Peng and P.E. Hydon, Moving
Frames and Noether’s Finite Difference Conservation Laws I, II, Trans. Math.

App.

“*E.L. Mansfield, G. Mari Beffa, J.P. Wang, Discrete moving frames and
applications., Foundations of Computational Mathematics, 13, 545—582,
(2013), and G. Mari Beffa and E.L. Mansfield, Discrete moving frames on
lattice varieties and lattice based multispace, Foundations of Computational
Mathematics 18, 181-247, (2018).



A discrete frame is essentially a sequence of frames.
A difference frame is a discrete frame with p, 41 = Spn.

Smooth** Difference
Invariants | 9% = pggp_l Kp = Pn+1pﬁl
Q! = pp~1 NY = pniopt

Syzygies | Q" — 8:Q" = |Q",Q"| | iKn = S(N}) Kn — KN},

** @Given here for invariant independent variables.



T he significant examples considered include

e a difference version of the SE(2) invariant Lagrangian for
Euler's Elastica,

Llu] = //4;2 ds

where k is the Euclidean curvature of a curve (x,u(x)) and s is
the Euclidean arclength.

The example concerns having a difference model of the smooth
system which is symplectic and which has all three conservation
laws built in, in the sense that the discrete Euler LLagrange
equations and the laws all have the relevant smooth equations
and laws as a continuum limit.

A simple method for this simple Lagrangian: Step 1: match
the smooth and the discrete frames, to first order.
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Results for the smooth Euler Elastica caselT

L[u] = [Kk2ds, k= uge/(1+ u%)?’/z, ds = (1 + u%)l/Qdaz
Kss + %’fg) =0
—1
(cl\ (:US Ug O\ (—Iiz\
(&) — —Us Ig 0 —2/4/3
\03) \\u—azl} 1\25/
Ad(p)~?

fTT.M.N. Goncalves and E.L. Mansfield, Moving Frames and Conservation
Laws for Euclidean Invariant Lagrangians, Studies in Applied Mathematics
130 (2013), 134-166.



Putting Ad(p) to the other side, we have,

/af;s Ug O\(cl\ (—/12\

—us xs 0O co | = | —2ks

S ATV R

We see clearly a first integral for the Euler Lagrange equation,

2 2 4 2
cit+c5=kr +4Kg,

a linear relation between u and x, and a single remaining
ordinary differential equation to solve,

1

m (01/12 —+ 202/-4:5) :

Ls —



Two representations of SE(2) are

Standard (Right) Adjoint
g(0,a,b) = Ad(g(0,a,b)) =
(cose —siné a\ ( cos 6 —siné@ O\
sinf cos6f b sin @ Ccos 6 0

0 0 1 asin® —bcosf bsind + acosO 1
\ ) \ )



The frames are, dropping the n’'s in the indices,

Ad(p(s)) =

(ws Usg O\

—Us ITg 0

\u —:1:1)

so that

Us

tanf(s) = ——

Ls

w24 u2=1

Ad(pg) =
( 1 —TQ Ul —UQ 0\
o 2
U1 —ug 1 —TQ 0
o Lo
\ uQ —zg 1)
tan QO — _M
T1 — TQ

lo = \/(5131 — z0)? + (u1 — up)?.



We have in the Adjoint representation for SE(2) that the
Maurer—Cartan matrices are

K 1= Ad(p)sAd(p)~? Ko 1= Ad(p1)Ad(pg) !
/ 0 k(s) O\
Rpg, O
= | —xk(s) O O =
0 —¢y 1
\ 0 —1 O)
where

cos Afy —sin A6
Rpg, = ° Y, o= \/(9’31 —20)? + (u1 — up)*
sin Afg cos Afg

Step 2: Now think: p1pg™ & Id + (65)psp™ L (20 ug)-



So, we took a first order approximation to be

sin Afg
£o

K = —

ds < {p
and we considered the approximation of [k2ds to be

(sin Afg)?
2

Using the methodology and Theorems in our paper, we arrived

at Euler Lagrange equations for the invariants (A6,) and (4),

and three conservation laws.




The difference laws look like ¢ = Ad(pg) 1vg or

(coseo —sin 6y o) () (vcl)\

sindy cosfy O 2 | =1 3

\ w w1\ )\
where the (vt) are known functions of the (A#;) and the (4),

and which are known in terms of n, once the Euler Lagrange
equations have been solved. We can see

12 22 12 212 Clvg_czvcl)
(c)* 4+ () = (vg) + (v§)~, tan@o= 202"
—I—c

and a linear relation for zg and ug.
Initial data: use p; = Kg(Abp, ¢y)po and (ig) = p61<8).
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What price the Ge and Marsden theorem?
Consider these two Lagrangians, one smooth, one
finite difference, their conservation laws and their conserved

symplectic forms:

L= [L(u,u)dt
c=L—uyD>(L)

du Ad (D>(L))

N=ZE=ZL<un,

tZ-|-1—tn ) (tn—l—l - tn)

dun_|_1/\d —|—dtn 1/\d

Un+4+1—Un
= L — tnt1— tnDQ(L)

~

3tn-|—1



To incorporate the physics into the numerical model, need to avoid the Ge
and Marsden “no go” theorem, so:

{> make the discrete Lagrangian to be
O invariant under the induced action on the approximation data, and
O have the correct continuum limit

> write down the exactly conserved (in approximation space), discrete
Noether law

{> prove the discrete Euler—Lagrange equation and the discrete conservation
laws, converge to the desired smooth equations and laws in some useful

sense.



When constructing a discrete Noether's theorem for your approximation

model, the big challenge is to find where the group action has gone to!

g
g
-
]
=
P02, IS
N2, “ “c
v ‘?E?ﬁ 0 ﬁ’{:}‘:) fbg
" o on
oo
&
2
@
_'-'.'ir- ®
e ¢ e
0, Ly ,
® B E L.
~® ®,0



For Finite Difference methods, where the approximation data is
the value at a point, you have to have the coordinates of the
independent variables as new dependent variables, whose values
are referred to a fixed (dummy) grid.

For Finite Elements, where the approximation data takes the
form of average values over edges and faces, we can induce
actions as follows,

/Uf(ac,u)dmH/{jf(g-x,g-u)de,

ox

ELM and Pryer: Noether-type Discrete Conserved Quantities arising from a Finite Element

approximation of a variational problem, FoCM, 17 (3) 2017.

An earlier version of mine using D. Arnold’'s complexes was never tested. Proc. FoCM,

2005.



Recall the link between extremisation and Noether's laws starts
with:

d
0= 9 /L(:L', U+ €V, ug + Vg, - .., U(py) T ev(nx)) dx
at extremal~ €|,
Versus
d d(g(t) - x)
0= G / L(g(8)-2, 9(8) , 9(8) s -, 9 (D) ()L 2
invariance L

with ¢g(t) C G and ¢g(0) = ¢, the identity element.



And we take this to be the the starting point for the discrete
Noether's Theorem. If p is the approximation data, we have

0= de /E(pl + evy,po + €vo, ..., pn + evp) dz
at extremal —0
and
0= / L(9() - p1,9(8) P2, 9(t) - p3, - 9() - pn) 9(1) - Tz
invariance

with L the approximate Lagrangian and dz the approximate
volume form.



Result for FEM: The relevant Noether’'s theorem will give an
exact conservation law of the approximate problem.

e [ he weaker the invariance in the functional analytic sense,
the weaker the law.

e NO symmetry conditions on the mesh are required.

e For symmetries that are linear actions on the base space,
ordinary Lagrangian elements can be used.

e Because integration by parts is only valid piecewise in the

relevant function spaces, the laws have a different look and
feel.



A bit of fun: in which we show evolving *“sound’” waves of a
drum beating in the heart of Stonehenge

e shallow water-type equations and FEM



e exact energy conservation using a trick from geometric
integration of ODES called “the discrete gradient method”
e weak conservation of linear and angular momentum, a la
ELM and Pryer.

We use a precise survey of Stonehenge, using only pegs and
ropes, discovered by Anthony Johnson, “Solving Stonehenge:
the new key to an ancient enigma”, Thames & Hudson, 2008.
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Also available: an extension of the smooth Noether’'s Second
Theorem and its finite difference analogue:

P.E. Hydon and ELM, (2011) Extensions of Noether's Second Theorem:
from continuous to discrete systems, Proc. Roy. Soc., Lond. A
467:3206—3221.

FEM-style conservation of potential vorticity is also proved
theoretically, but needs a numerical experiment to complete the
project.

THANK YOU!!



